Obesidade I: Visão geral e mecanismos moleculares e bioquímicos

Obesidade E Saúde

https://www.sciencedirect.com/science/article/pii/S000629522200106X

Robert H. Lustig, David Collier, Christopher Kassotis, Troy A. Roepke, Min Ji KimEtienneBlanc , Robert Barouki , Amita Bansal, Matthew C. Cave , SaurabhChatterjee ,Mahua Choudhury , Michael GilbertsonDominiqueLagadic – Gossmann, Sarah Howard mLars Lind nCraig R. TomlinsonoJan Vondracek pJerrold J. Heindel m

aDivisão de Endocrinologia, Departamento de Pediatria, Universidade da Califórnia, San Francisco, CA 94143, Estados Unidos;

bBrody School of Medicine, East Carolina University, Greenville, NC 27834, Estados Unidos;

cInstituto de Ciências da Saúde Ambiental e Departamento de Farmacologia, Wayne State University, Detroit, MI 48202, Estados Unidos;

dEscola de Ciências Ambientais e Biológicas, Rutgers University, New Brunswick, NJ 08901, Estados Unidos;

eUniversidade Sorbonne Paris Nord, Bobigny, INSERM U1124 (T3S), Paris, França;

fDepartamento de Bioquímica e Toxicologia, Universidade de Paris, INSERM U1224 (T3S), 75006 Paris, França;

gFaculdade de Saúde e Medicina, Universidade Nacional Australiana, Canberra, Austrália

hDivisão de Gastroenterologia, Hepatologia e Nutrição, Universidade de Louisville, Louisville, KY 40402, Estados Unidos;

Laboratório de Saúde e Doenças Ambientais, Universidade da Carolina do Sul, Columbia, SC 29208, Estados Unidos;

jFaculdade de Farmácia, Texas A&M University, College Station, TX 77843, Estados Unidos;

kGrupo de Pesquisa em Saúde Ocupacional e Ambiental, Universidade de Stirling, Stirling, Escócia, Reino Unido;

lUniv Rennes, INSERM, EHESP, IRSET – UMR_S 1085, 35000 Rennes, França;

mAmbiente Saudável e Estratégias de Disrupção Endócrina, Commonweal, Bolinas, CA 92924, Estados Unidos;

nDepartamento de Ciências Médicas, Universidade de Uppsala, Uppsala, Suécia;

oNorris Cotton Cancer Center, Departamento de Biologia Molecular e de Sistemas, Geisel School of Medicine em Dartmouth, Líbano, NH 03756, Estados Unidos;

pDepartamento de Citocinética, Instituto de Biofísica da Academia Tcheca de Ciências, Brno, República Tcheca.

Recebido em 8 de dezembro de 2021, revisado em 12 de março de 2022, aceito em 15 de março de 2022, disponível on-line em 5 de abril de 2022, versão do registro em 25 de abril de 2022 .

Destaques

Há uma expansão global da obesidade e da pandemia de doenças não transmissíveis.

A obesidade é uma doença multifatorial, multiorgânica, multihormonal e multimecanística.

Influências genéticas e ambientais controlam a adiposidade e o ganho de peso.

Compreender os tecidos/órgãos, hormônios e mecanismos envolvidos na obesidade prepara o terreno para a compreensão das evidências da hipótese obesogênica.

Resumo

A é uma condição crônica e recorrente caracterizada pelo excesso de gordura corporal. Sua prevalência aumentou globalmente desde a década de 1970, e o número de pessoas obesas e com sobrepeso é agora maior do que aquelas com baixo peso. A obesidade é uma condição multifatorial e, como tal, muitos componentes contribuem para o seu desenvolvimento e patogênese. Esta é a primeira de três revisões complementares que consideram a obesidade (nt.: estão os fragmentos mais importantes dos textos das três, publicadas neste website. Os textos são longos e complexos, por isso escolhemos os aspectos que possam mais interessar a nós leigos, cidadãos e pais). Esta revisão se concentra na genética, vírus, resistência à insulina, inflamação, microbioma intestinal e ritmos circadianos que promovem a obesidade, juntamente com hormônios, fatores de crescimento e órgãos e tecidos que controlam seu desenvolvimento. Ele mostra que a regulação do balanço energético (ingestão versus gasto) depende da interação de uma variedade de hormônios do tecido adiposo, trato gastrointestinal, pâncreas, fígado e cérebro. Ela detalha como integrar neurotransmissores centrais e sinais metabólicos periféricos (por exemplo, leptina, insulina, grelina, peptídeo YY3-36) é essencial para controlar a homeostase energética e o comportamento alimentar. Descreve os diferentes tipos de adipócitos e como o desenvolvimento das células adiposas é controlado por hormônios e fatores de crescimento que atuam através de uma variedade de receptores, incluindo o receptor-gama ativado pelo proliferador de peroxissoma, retinóide X, insulina, estrogênio, andrógeno, glicocorticóide, hormônio da tireóide, fígado X, androstano constitutivo, pregnano X, farnesóide e receptores de hidrocarboneto aril. Finalmente, demonstra que a obesidade provavelmente tem origens no útero (nt.: aspecto importantíssimo porque estamos agredindo com as moléculas modernas sintéticas os que ainda nem nasceram. ESTAMOS DETERMINANDO A EXISTÊNCIA DESTA SÍNDROME NOS QUE PODERIAM NASCER SAUDÁVEIS). Compreender esses fatores bioquímicos de adiposidade e disfunção metabólica ao longo do ciclo de vida confere plausibilidade e credibilidade à “hipótese obesogênica” (ou seja, a importância de substâncias químicas ambientais que interrompem esses receptores para promover adiposidade ou alterar o metabolismo), elucidada mais detalhadamente na avaliações destas duas situações.

Resumo gráfico

1 . Introdução e tendências seculares

A obesidade é uma condição crônica e recidivante caracterizada pelo excesso de gordura corporal [1][2]. Está entre os problemas de saúde globais mais críticos e uma pandemia crescente que afeta adultos, crianças e bebês [3][4][5]. As taxas de obesidade triplicaram desde a década de 1970, e a prevalência de obesidade em adultos nos EUA aumentou de 30,5% em 2000 para 42,4% em 2018, um aumento de 40% na frequência em menos de duas décadas [6]Atualmente, existem mais indivíduos obesos globalmente do que aqueles que estão abaixo do peso [7][8][9]. (nt.: destaque dado pela tradução).

No entanto, esse aumento na prevalência da obesidade não se restringe aos humanos. Em 2011, Klimentidis e colegas [10] relataram pesos corporais médios na meia-idade de muitos animais, incluindo cães e gatos domésticos, primatas não humanos e roedores, independentemente das condições de vida (tanto selvagens quanto vivendo em colônias de pesquisa) também aumentou. Essas mudanças no peso dos animais em várias espécies sugerem que mudanças ambientais semelhantes impactaram tanto animais quanto humanos para promover a obesidade. Embora as mudanças no comportamento humano, sem dúvida, desempenhem um papel na manifestação da obesidade, mecanismos hormonais e bioquímicos específicos, fora de seu controle imediato, provavelmente contribuem.

Esta é a primeira de três revisões complementares com foco em obesidade e obesogênios. Esta primeira revisão delineia os órgãos e mecanismos responsáveis ​​pela regulação do metabolismo e seu rígido controle por hormônios e seus respectivos receptores. A interrupção dessa regulação por hormônios ou outros estímulos ambientais pode levar à obesidade em qualquer momento do ciclo de vida, inclusive no pré-natal. A revisão complementar elucidará a química e a ação fisiopatológica dos obesogênicos – produtos químicos ambientais projetados para um propósito específico, como agrotóxicosretardadores de chama ou plastificantes, mas que têm efeitos colaterais que interferem na ação hormonal – o que pode levar a alterações no metabolismo e, finalmente, à obesidade. A segunda revisão também estabelecerá o nexo causal entre os obesógenos e a obesidade, fornecendo explicitamente evidências que apoiam a “hipótese dos obesógenos” e discutirá as lacunas de pesquisa que devem ser exploradas. A terceira se concentrará em ensaios diretos e indiretos para detectar obesogênios.

2 . Obesidade e doença

[nota do website: não iremos transcrever todos os textos por serem técnicos e específicos, podendo tornar a leitura muito difícil e longa. Iremos somente colocar os aspectos que considerados relevantes para nós, os leigos.]

…………………………………………………………………………………………………..

3 . Desenvolvimento e função do tecido adiposo

…………………………………………………………………………………………………..

4 . Receptores envolvidos no controle do metabolismo energético

……………………………………………………………………………………………………

5 . Neuroendocrinologia da obesidade

……………………………………………………………………………………………………..

6 . Natureza heterogênea do controle de peso e adiposidade

……………………………………………………………………………………………………..

7 . Mecanismos fisiopatológicos que promovem obesidade

……………………………………………………………………………………………………..

8 . Origens fetais da obesidade

……………………………………………………………………………………………………..

9 . Conclusões

Esta revisão concentrou-se nos tecidos/órgãos, hormônios, vias e mecanismos que desempenham papéis-chave no metabolismo para induzir o tecido adiposo, resultando em obesidade. A obesidade é uma doença multifuncional, multi-tecidos, multi-hormônio, multirreceptor e multimecanismo. Quando a obesidade resulta do aumento do VAT ou da gordura do fígado com grandes células de gordura, inflamação e resistência à insulina e à leptina, também está associada a vários distúrbios metabólicos, incluindo DM2 (nt.: diabetes tipo 2), DHGNA (nt.: doença hepática gordurosa não alcoólica), DCV (nt.: doença cardiovascular) e alguns tipos de câncer. Por outro lado, quando a obesidade resulta do aumento da TAS com pequenos adipócitos, inflamação limitada e atividade normal de insulina e leptina, há, em alguns casos, falta de perturbação metabólica correspondente, pelo menos inicialmente. A natureza multifuncional da obesidade resulta de muitos fatores de interação altamente coordenados que desempenham um papel na obesidade, incluindo fatores genéticos e ambientais. O ambiente inclui nutrição, exercício, vírus, microbioma, ritmos circadianos (esta revisão) e produtos químicos ambientais (discutidos na revisão complementar). Os fatores ambientais atuam nos complexos sistemas de órgãos interativos que controlam o metabolismo, incluindo tecido adiposo, trato gastrointestinal, músculo, pâncreas, fígado e várias partes do cérebro, que integram o controle do comportamento alimentar, incluindo a alimentação hedônica homeostática. O controle do desenvolvimento do tecido adiposo, bem como o número e tamanho dos adipócitos, depende da atividade e interação de uma variedade de fatores de transcrição, incluindo os dois reguladores mestres da adipogênese: PPARγ; e RXR , que pode ativar a adipogênese sozinho ou como um heterodímero com PPARγ. Os hormônios insulina, estrogênio, andrógeno, glicocorticóide e hormônio tireoidiano também desempenham papéis importantes no metabolismo e na adipogênese, ligando-se aos seus receptores. Outros fatores de transcrição do fígado modulam sinais metabólicos específicos, que podem levar à doença quando disfuncionais. O LXR, embora não seja ativado por hormônios específicos, regula a diferenciação dos adipócitos, o transporte de colesterol e o acúmulo de triglicerídeos. O PXR e o CAR parecem atuar em conjunto com o PPARγ e regulam a homeostase da glicose e energia e o metabolismo imunológico e lipídico. O FXR regula a síntese de ácidos biliares e o metabolismo lipídico, e o AhR pode resultar em resistência à insulina hepática. A ativação desses receptores pode resultar em hiperinsulinemia, resistência à leptina e ganho de peso.

Os tecidos e órgãos que controlam o metabolismo e, portanto, o ganho de peso, se comunicam por meio de uma rede de hormônios e neurotransmissores. Por exemplo, leptina, resistina e adiponectina são induzidas a partir de adipócitos; grelina GIP do estômago; CCK, GLP-1, OXM e PYY 3-36 do trato gastrointestinal; insulina e glucagon do pâncreas; NPY-AgRP e POMC de neurônios hipotalâmicos; dopamina do VTA e NA; bem como estrogênio, andrógeno, hormônio tireoidiano e cortisol de suas respectivas glândulas endócrinas.

Embora a obesidade possa ocorrer ao longo da vida, ela pode ter suas origens durante o desenvolvimento fetal e a infância e, portanto, é regulada por mudanças na regulação epigenética ou na programação de desenvolvimento da expressão gênica. Essas perturbações são particularmente suscetíveis a influências ambientais.

Esta revisão do metabolismo destaca os órgãos e mecanismos responsáveis ​​pela regulação da adiposidade. Também estabelece a hipótese de que substâncias químicas ambientais capazes de interromper esses mecanismos, denominadas obesogênicos, podem levar à obesidade. Numerosos compostos, alguns nutricionais e alguns disruptores endócrinos (EDCs/endocrine disruptors chemicals), podem afetar o controle hormonal da diferenciação, desenvolvimento, crescimento e/ou manutenção do tecido adiposo. Essas alterações subsequentemente resultam em efeitos diferenciais nos depósitos de gordura que podem afetar a disfunção metabólica. Assim, propomos que a mudança na prevalência e gravidade da obesidade é, pelo menos em parte, devido à ocorrência e acúmulo de várias alterações ambientais – na forma de má nutrição ou EDCs obesogênicos – em uma população geneticamente suscetível, o mais suscetível é o feto. O segundo artigo complementar revisará a plausibilidade, mecanismo e evidência para esses obesogênicos –in vitro , animais e humanos.

Financiamento

Christopher Kassotis, NIH, R00ES030405.

Dominique Lagadic-Gossman, European Union Horizon 2020 Research and Innovation Program, Oberon #825712.

Vesna Munic Kos, Swedish Research Council for Sustainable Development (FORMAS) #2019-00375.

Troy Roepke, NIH, R01MH12 3544, P30ES005022, USDA/NIFA NJ6195.

Jan Vondracek, Czech Science Foundation #21-005335, Institute of Biophysics of the Czech Academy of Science, RVO-68081707.

Robert Barouki, European Union Horizon 2020 Research and Innovation Program, Oberon #825712.

Amita Bansal, Diabetes Australia #S5610040.

Mathew Cave, NIH, R35ES028373, R01ES032189, T32ES011564, P42ES023716, P30ES030283, R21ES031510.

Saurabh Chatterjee, NIH, P20GM103641, P01ES028942, P01AT003961, DoD-IIRFA W81XWH1810374.

Mahua Choudhury, Morris L Lichtenstein Jr Medical Research Foundation.

David Collier, NIH, P30ES025128.

Referências

[1] A.M. Jastreboff, C.M. Kotz, S. Kahan, A.S. Kelly, S.B. Heymsfield Obesity as a disease: the obesity society 2018 position statement Obesity (Silver Spring), 27 (1) (2019), pp. 7-9 View PDF CrossRefView Record in ScopusGoogle Scholar

[2] J.I. Mechanick, A.J. Garber, Y. Handelsman, W.T. Garvey American association of clinical endocrinologists’ position statement on obesity and obesity medicine Endocr Pract, 18 (5) (2012), pp. 642-648 ArticleDownload PDFView Record in ScopusGoogle Scholar

[3]L.M. Jaacks, S. Vandevijvere, A. Pan, C.J. McGowan, C. Wallace, F. Imamura, D. Mozaffarian, B. Swinburn, M. Ezzati The obesity transition: stages of the global epidemic Lancet. Diabet. Endocrinol., 7 (3) (2019), pp. 231-240 ArticleDownload PDFView Record in ScopusGoogle Scholar

[4] M. Blüher Obesity: global epidemiology and pathogenesis Nat. Rev. Endocrinol., 15 (5) (2019), pp. 288-298 View PDF CrossRefView Record in ScopusGoogle Scholar

[5] W.J. Morales Camacho, J.M. Molina Díaz, S. Plata Ortiz, J.E. Plata Ortiz, M.A. Morales Camacho, B.P. Calderón Childhood obesity: aetiology, comorbidities, and treatment Diabetes Metab. Res. Rev., 35 (8) (2019), Article e3203 View Record in ScopusGoogle Scholar

[6] C.M. Hales, M.D. Carroll, C.D. Fryar, C.L. Ogden, Prevalence of Obesity Among Adults and Youth: United States, 2015-2016, NCHS data brief (288) (2017) 1-8. Google Scholar

[7] E.P. Williams, M. Mesidor, K. Winters, P.M. Dubbert, S.B. Wyatt Overweight and obesity: prevalence, consequences, and causes of a growing public health problem Curr. Obesity Rep., 4 (3) (2015), pp. 363-370 View PDF CrossRefView Record in ScopusGoogle Scholar

[8] M. Ng, T. Fleming, M. Robinson, B. Thomson, N. Graetz, C. Margono, E.C. Mullany, S. Biryukov, C. Abbafati, S.F. Abera, J.P. Abraham, N.M. Abu-Rmeileh, T. Achoki,  F.S. AlBuhairan,  Z.A. Alemu, R. Alfonso, M.K. Ali, R. Ali, N.A. Guzman, W. Ammar, P. Anwari, A. Banerjee, S. Barquera,  S. Basu, D.A. Bennett, Z. Bhutta, J. Blore, N. Cabral, I.C. Nonato, J.C. Chang, R. Chowdhury, K.J. Courville, M.H. Criqui, D.K. Cundiff, K.C. Dabhadkar, L. Dandona, A. Davis, A. Dayama, S.D. Dharmaratne, E.L. Ding, A.M. Durrani, A. Esteghamati, F. Farzadfar, D.F. Fay, V.L. Feigin, A. Flaxman, M.H. Forouzanfar, A. Goto, M.A. Green, R. Gupta, N. Hafezi-Nejad, G.J. Hankey,  H.C. Harewood, R. Havmoeller, S. Hay, L. Hernandez, A. Husseini, B.T. Idrisov, N. Ikeda, F. Islami, E. Jahangir, S.K. Jassal, S.H. Jee, M. Jeffreys, J.B. Jonas, E.K. Kabagambe,  S.E. Khalifa, A.P. Kengne, Y.S. Khader, Y.H. Khang, D. Kim, R.W. Kimokoti, J.M. Kinge, Y. Kokubo, S. Kosen, G. Kwan, T. Lai, M. Leinsalu, Y. Li, X. Liang, S. Liu, G. Logroscino, P.A. Lotufo, Y. Lu, J. Ma, N.K. Mainoo, G.A. Mensah, T.R. Merriman, A.H. Mokdad, J. Moschandreas, M. Naghavi, A. Naheed, D. Nand, K.M. Narayan, E.L. Nelson, M.L. Neuhouser, M.I. Nisar, T. Ohkubo, S.O. Oti, A. Pedroza, D. Prabhakaran, N. Roy, U. Sampson, H. Seo, S.G. Sepanlou, K. Shibuya, R. Shiri, I. Shiue, G.M. Singh, J.A. Singh, V. Skirbekk, N.J. Stapelberg, L. Sturua, B.L. Sykes, M. Tobias, B.X. Tran, L. Trasande, H. Toyoshima, S. van de Vijver, T.J. Vasankari, J.L. Veerman, G. Velasquez-Melendez, V.V. Vlassov, S.E. Vollset, T. Vos, C. Wang, X. Wang, E. Weiderpass, A. Werdecker, J.L. Wright, Y.C. Yang, H. Yatsuya, J. Yoon, S.J. Yoon,  Y. Zhao, M. Zhou, S. Zhu, A.D. Lopez, C.J. Murray, E. Gakidou Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013 Lancet, 384 (9945) (2014), pp. 766-781 ArticleDownload PDFGoogle Scholar

[9] C.L. Ogden, M.D. Carroll, C.D. Fryar, K.M. Flegal, Prevalence of Obesity Among Adults and Youth: United States, 2011-2014, NCHS data brief (219) (2015) 1-8. Google Scholar

[10] Y.C. Klimentidis, T.M. Beasley, H.Y. Lin, G. Murati, G.E. Glass, M. Guyton, W. Newton, M. Jorgensen, S.B. Heymsfield, J. Kemnitz, L. Fairbanks, D.B. Allison Canaries in the coal mine: a cross-species analysis of the plurality of obesity epidemics Proc. Biol. Sci., 278 (1712) (2011), pp. 1626-1632 View PDF CrossRefView Record in ScopusGoogle Scholar

[11] L. Landsberg, L.J. Aronne, L.J. Beilin, V. Burke, L.I. Igel, D. Lloyd-Jones, J. Sowers Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment: a position paper of the obesity society and the American society of hypertension J. Clin. Hypertens. (Greenwich), 15 (1) (2013), pp. 14-33 View PDF CrossRefView Record in ScopusGoogle Scholar

[12] C. Andolfi, P.M. Fisichella Epidemiology of obesity and associated comorbidities J. Laparoendosc Adv. Surg. Tech. A, 28 (8) (2018), pp. 919-924 View Record in ScopusGoogle Scholar

[13] N. Stefan Causes, consequences, and treatment of metabolically unhealthy fat distribution, The Lancet Diabet. Endocrinol., 8 (7) (2020), pp. 616-627 ArticleDownload PDFView Record in ScopusGoogle Scholar

[14] J.C. Chan, J.C. Cheung, C.D. Stehouwer, J.J. Emeis, P.C. Tong, G.T. Ko, J.S. Yudkin The central roles of obesity-associated dyslipidaemia, endothelial activation and cytokines in the Metabolic Syndrome–an analysis by structural equation modelling Int. J. Obesity Related Metabol. Disorders: J. Int. Assoc. Study Obesity, 26 (7) (2002), pp. 994-1008 View PDF CrossRefView Record in ScopusGoogle Scholar

[15] A.K. Loomis, S. Kabadi, D. Preiss, C. Hyde, V. Bonato, M. St Louis, J. Desai, J.M. Gill,  P. Welsh, D. Waterworth, N. Sattar Body mass index and risk of nonalcoholic fatty liver disease: two electronic health record prospective studies J. Clin. Endocrinol. Metabol., 101 (3) (2016), pp. 945-952 View PDF CrossRefGoogle Scholar

[16] P. Mathieu, I. Lemieux, J.P. Després Obesity, inflammation, and cardiovascular risk Clin. Pharmacol. Ther., 87 (4) (2010), pp. 407-416 View PDF CrossRefView Record in ScopusGoogle Scholar

[nota do website: como são muitas as referência e no momento da transcrição, ocorre esse descompasso com a configuração, deixaremos de fazer as adequações das restantes 391 citações pelo trabalho desnecessário para o conhecimento destas informações. Estão todas abaixo, mas com uma configuração inadequada, mas presente.]

[17]

S.S. Virani, A. Alonso, H.J. Aparicio, E.J. Benjamin, M.S. Bittencourt, C.W. Callaway, A.P. Carson, A.M. Chamberlain, S. Cheng, F.N. Delling, M.S.V. Elkind, K.R. Evenson, J.F. Ferguson, D.K. Gupta, S.S. Khan, B.M. Kissela, K.L. Knutson, C.D. Lee, T.T. Lewis, J. Liu, M.S. Loop, P.L. Lutsey, J. Ma, J. Mackey, S.S. Martin, D.B. Matchar, M.E. Mussolino, S.D. Navaneethan, A.M. Perak, G.A. Roth, Z. Samad, G.M. Satou, E.B. Schroeder, S.H. Shah, C.M. Shay, A. Stokes, L.B. VanWagner, N.Y. Wang, C.W. Tsao

Heart disease and stroke statistics-2021 Update: a report from the american heart association

Circulation, 143 (8) (2021), pp. e254-e743

Google Scholar[18]

S.M. Koroukian, W. Dong, N.A. Berger

Changes in age distribution of obesity-associated cancers

JAMA Network Open, 2 (8) (2019), Article e199261 View PDF

CrossRefView Record in ScopusGoogle Scholar[19]

B.C.M. Stephan, R. Birdi, E.Y.H. Tang, T.D. Cosco, L.M. Donini, S. Licher, M.A. Ikram, M. Siervo, L. Robinson

Secular trends in dementia prevalence and incidence worldwide: a systematic review

J. Alzheimers Dis, 66 (2) (2018), pp. 653-680 View PDF

CrossRefView Record in ScopusGoogle Scholar[20]

C.P. Benziger, G.A. Roth, A.E. Moran

The global burden of disease study and the preventable burden of NCD

Glob Heart, 11 (4) (2016), pp. 393-397

ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[21]Global, regional, and national age-sex specific mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease Study 2016, Lancet 390(10100) (2017) 1151-1210.

Google Scholar[22]

J. Bhattacharya, M.K. Bundorf

The incidence of the healthcare costs of obesity

J. Health Econ., 28 (3) (2009), pp. 649-658

ArticleDownload PDFView Record in ScopusGoogle Scholar[23]

S.A. Xanthakos, J.E. Lavine, K.P. Yates, J.B. Schwimmer, J.P. Molleston, P. Rosenthal, K.F. Murray, M.B. Vos, A.K. Jain, A.O. Scheimann, T. Miloh, M. Fishbein, C.A. Behling, E.M. Brunt, A.J. Sanyal, J. Tonascia

Progression of fatty liver disease in children receiving standard of care lifestyle advice

Gastroenterology, 159 (5) (2020), pp. 1731-1751.e10

ArticleDownload PDFView Record in ScopusGoogle Scholar[24]

P. Bjornstad, K.L. Drews, S. Caprio, R. Gubitosi-Klug, D.M. Nathan, B. Tesfaldet, J. Tryggestad, N.H. White, P. Zeitler

Long-term complications in youth-onset type 2 diabetes

New Engl. J. Med., 385 (5) (2021), pp. 416-426

View Record in ScopusGoogle Scholar[25]

J.M. Lawrence, J. Divers, S. Isom, S. Saydah, G. Imperatore, C. Pihoker, S.M. Marcovina, E.J. Mayer-Davis, R.F. Hamman, L. Dolan, D. Dabelea, D.J. Pettitt, A.D. Liese

Trends in prevalence of Type 1 and Type 2 diabetes in children and adolescents in the US, 2001–2017

JAMA, 326 (8) (2021), pp. 717-727 View PDF

CrossRefView Record in ScopusGoogle Scholar[26]

J. Dobner, S. Kaser

Body mass index and the risk of infection – from underweight to obesity

Clin. Microbiol. Infect., 24 (1) (2018), pp. 24-28

ArticleDownload PDFView Record in ScopusGoogle Scholar[27]

E. Korakas, I. Ikonomidis, F. Kousathana, K. Balampanis, A. Kountouri, A. Raptis, L. Palaiodimou, A. Kokkinos, V. Lambadiari

Obesity and COVID-19: immune and metabolic derangement as a possible link to adverse clinical outcomes

Am. J. Physiol. Endocrinol. Metabol., 319 (1) (2020), pp. E105-E109 View PDF

CrossRefView Record in ScopusGoogle Scholar[28]

B.M. Popkin, S. Du, W.D. Green, M.A. Beck, T. Algaith, C.H. Herbst, R.F. Alsukait, M. Alluhidan, N. Alazemi, M. Shekar

Individuals with obesity and COVID-19: a global perspective on the epidemiology and biological relationships

Obes Rev, 21 (11) (2020), Article e13128

View Record in ScopusGoogle Scholar[29]

J.M. Chan, E.B. Rimm, G.A. Colditz, M.J. Stampfer, W.C. Willett

Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men

Diabetes Care, 17 (1994), pp. 961-969 View PDF

CrossRefView Record in ScopusGoogle Scholar[30]

T. McLaughlin, F. Abbasi, K. Cheal, J. Chu, C. Lamendola, G.M. Reaven

Use of metabolic markers to identify overweight individuals who are insulin resistant

Ann. Int. Med., 139 (2003), pp. 802-809 View PDF

CrossRefView Record in ScopusGoogle Scholar[31]

D.L. Chen, C. Liess, A. Poljak, A. Xu, J. Zhang, C. Thoma, M. Trenell, B. Milner, A.B. Jenkins, D.J. Chisholm, D. Samocha-Bonet, J.R. Greenfield

Phenotypic characterization of insulin-resistant and insulin-sensitive obesity

J. Clin. Endocrinol. Metab., 100 (11) (2015), pp. 4082-4091 View PDF

CrossRefView Record in ScopusGoogle Scholar[32]D. Samocha-Bonet, V.D. Dixit, C.R. Kahn, R.L. Leibel, X. Lin, M. Nieuwdorp, K.H. Pietiläinen, R. Rabasa-Lhoret, M. Roden, P.E. Scherer, e. al., Metabolically healthy and unhealthy obese–the 2013 Stock Conference report, Obes. Rev. 15 (2014) 697-708.

Google Scholar[33]

G.I. Smith, B. Mittendorfer, S. Klein

Metabolically healthy obesity: facts and fantasies

J. Clin. Invest, 129 (10) (2019), pp. 3978-3989 View PDF

CrossRefView Record in ScopusGoogle Scholar[34]

M. Blüher

Metabolically healthy obesity

Endocr. Rev., 41 (3) (2020), pp. 405-420

View Record in ScopusGoogle Scholar[35]

Z. Zhou, J. Macpherson, S.R. Gray, J.M.R. Gill, P. Welsh, C. Celis-Morales, N. Sattar, J.P. Pell, F.K. Ho

Are people with metabolically healthy obesity really healthy? A prospective cohort study of 381,363 UK Biobank participants

Diabetologia, 64 (9) (2021), pp. 1963-1972 View PDF

CrossRefView Record in ScopusGoogle Scholar[36]

F. Abbasi, J.W. Chu, C. Lamendola, T. McLaughlin, J. Hayden, G.M. Reaven, P.D. Reaven

Discrimination between obesity and insulin resistance in the relationship with adiponectin

Diabetes, 53 (3) (2004), pp. 585-590 View PDF

CrossRefView Record in ScopusGoogle Scholar[37]

C. Voulgari, N. Tentolouris, P. Dilaveris, D. Tousoulis, N. Katsilambros, C. Stefanadis

Increased heart failure risk in normal-weight people with metabolic syndrome compared with metabolically healthy obese individuals

J. Am. Coll. Cardiol., 58 (13) (2011), pp. 1343-1350

ArticleDownload PDFView Record in ScopusGoogle Scholar[38]

J. Araújo, J. Cai, J. Stevens

Prevalence of optimal metabolic health in American adults: national health and nutrition examination survey 2009–2016

Metab. Syndr. Relat. Disord., 17 (1) (2019), pp. 46-52 View PDF

CrossRefView Record in ScopusGoogle Scholar[39]

E.L. Thomas, J.A. Fitzpatrick, S.J. Malik, S.D. Taylor-Robinson, J.D. Bell

Whole body fat: content and distribution

Prog. Nucl. Magn. Reson. Spectrosc., 73 (2013), pp. 56-80

ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[40]

A.L. Rosenbloom, J. Guevara Aguirre, R.G. Rosenfeld, P.J. Fielder

The little women of Loja–growth hormone-receptor deficiency in an inbred population of southern Ecuador

N Engl J Med., 323 (20) (1990), pp. 1367-1374

View Record in ScopusGoogle Scholar[41]

F.F. Chehab

Obesity and lipodystrophy–where do the circles intersect?

Endocrinology, 149 (3) (2008), pp. 925-934 View PDF

CrossRefView Record in ScopusGoogle Scholar[42]

M.W. Schwartz, R.J. Seeley, L.M. Zeltser, A. Drewnowski, E. Ravussin, L.M. Redman, R.L. Leibel

Obesity pathogenesis: an endocrine society scientific statement

Endocr. Rev., 38 (4) (2017), pp. 267-296 View PDF

CrossRefView Record in ScopusGoogle Scholar[43]

S. Basu, P. Yoffe, N. Hills, R.H. Lustig

The relationship of sugar to population-level diabetes prevalence: an econometric analysis of repeated cross-sectional data

PLoS ONE, 8 (2) (2013), Article e57873 View PDF

CrossRefView Record in ScopusGoogle Scholar[44]

J. Sepúlveda, C. Murray

The state of global health in 2014

Science, 345 (6202) (2014), pp. 1275-1278 View PDF

CrossRefView Record in ScopusGoogle Scholar[45]

Y.W. Park, S. Zhu, L. Palaniappan, S. Heshka, M.R. Carnethon, S.B. Heymsfield

The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988–1994

Arch. Intern. Med., 163 (4) (2003), pp. 427-436

View Record in ScopusGoogle Scholar[46]

E.J. Gallagher, D. LeRoith

Obesity and diabetes: the increased risk of cancer and cancer-related mortality

Physiol. Rev., 95 (3) (2015), pp. 727-748 View PDF

CrossRefView Record in ScopusGoogle Scholar[47]

E.E. Calle, M.J. Thun, J.M. Petrelli, C. Rodriguez, C.W. Heath Jr.

Body-mass index and mortality in a prospective cohort of U.S. adults

New Engl. J. Med., 341 (15) (1999), pp. 1097-1105

Google Scholar[48]

R.P. Wildman, P. Muntner, K. Reynolds, A.P. McGinn, S. Rajpathak, J. Wylie-Rosett, M.R. Sowers

The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering: prevalence and correlates of 2 phenotypes among the US population (NHANES 1999–2004)

Arch. Intern. Med., 168 (15) (2008), pp. 1617-1624 View PDF

CrossRefView Record in ScopusGoogle Scholar[49]

P. Dempster, S. Aitkens

A new air displacement method for the determination of human body composition

Med. Sci. Sports Exerc., 27 (12) (1995), pp. 1692-1697

View Record in ScopusGoogle Scholar[50]

M.M. Ibrahim

Subcutaneous and visceral adipose tissue: structural and functional differences

Obes. Rev., 11 (1) (2010), pp. 11-18

View Record in ScopusGoogle Scholar[51]

R. Ter Horst, I.C.L. van den Munckhof, K. Schraa, R. Aguirre-Gamboa, M. Jaeger, S.P. Smeekens, T. Brand, H. Lemmers, H. Dijkstra, T.E. Galesloot, J. de Graaf, R.J. Xavier, Y. Li, L.A.B. Joosten, J.H.W. Rutten, M.G. Netea, N.P. Riksen

Sex-specific regulation of inflammation and metabolic syndrome in obesity

Arterioscler Thromb. Vasc. Biol., 40 (7) (2020), pp. 1787-1800 View PDF

CrossRefView Record in ScopusGoogle Scholar[52]

Y.S. Torre, R. Wadeea, V. Rosas, K.L. Herbst

Lipedema: friend and foe

Hormone Mol. Biol. Clin. Investigat., 33 (1) (2018)

Google Scholar[53]

S.A. Porter, J.M. Massaro, U. Hoffmann, R.S. Vasan, C.J. O’Donnel, C.S. Fox

Abdominal subcutaneous adipose tissue: a protective fat depot?

Diabetes Care, 32 (6) (2009), pp. 1068-1075 View PDF

CrossRefView Record in ScopusGoogle Scholar[54]

B.S. Mohammed, S. Cohen, D. Reeds, V.L. Young, S. Klein

Long-term effects of large-volume liposuction on metabolic risk factors for coronary heart disease

Obesity (Silver Spring), 16 (12) (2008), pp. 2648-2651 View PDF

CrossRefView Record in ScopusGoogle Scholar[55]

M. Bastien, P. Poirier, P. Brassard, B.J. Arsenault, O.F. Bertrand, J.P. Després, O. Costerousse, M.E. Piché

Effect of PPARγ agonist on aerobic exercise capacity in relation to body fat distribution in men with type 2 diabetes mellitus and coronary artery disease: a 1-yr randomized study

Am. J. Physiol. Endocrinol. Metabol., 317 (1) (2019), pp. E65-E73 View PDF

CrossRefView Record in ScopusGoogle Scholar[56]

M. Kabir, K.J. Catalano, S. Ananthnarayan, S.P. Kim, G.W. Van Citters, M.K. Dea, R.N. Bergman

Molecular evidence supporting the portal theory: a causative link between visceral adiposity and hepatic insulin resistance

Am. J. Physiol. Endocrinol. Metab., 288 (2) (2004), pp. E454-E461

Google Scholar[57]

O.V. Gruzdeva, A.D. Borodkina, O.E. Akbasheva, Y.A. Dileva, L.V. Antonova, V.G. Matveeva, E.G. Uchasova, S.V. Ivanov, E.V. Belik, E.V. Fanaskova, V.N. Karetnikova, A.N. Kokov, O.L. Barbarash

Influence of visceral obesity on the secretion of adipokines with epicardial adipocytes in patients with coronary heart disease

Ter Arkh, 90 (10) (2018), pp. 71-78

View Record in ScopusGoogle Scholar[58]

P. Björntorp

How should obesity be defined?

J. Int. Med., 227 (3) (1990), pp. 147-149 View PDF

CrossRefView Record in ScopusGoogle Scholar[59]

E. Ravussin, S.R. Smith

Increased fat intake, impaired fat oxidation, and failure of fat cell proliferation result in ectopic fat storage, insulin resistance, and type 2 diabetes mellitus

Ann. NY Acad. Sci., 967 (2002), pp. 363-378

View Record in ScopusGoogle Scholar[60]

E. D’Adamo, A.M. Cali, R. Weiss, N. Santoro, B. Pierpont, V. Northrup, S. Caprio

Central role of fatty liver in the pathogenesis of insulin resistance in obese adolescents

Diabetes Care, 33 (8) (2010), pp. 1817-1822 View PDF

CrossRefView Record in ScopusGoogle Scholar[61]

K.A. Britton, C.S. Fox

Ectopic fat depots and cardiovascular disease

Circulation, 124 (24) (2011), pp. e837-e841 View PDF

CrossRefView Record in ScopusGoogle Scholar[62]

R.H. Lustig, K. Mulligan, S.M. Noworolski, A. Gugliucci, A. Erkin-Cakmak, M.J. Wen, V.W. Tai, J.M. Schwarz

Isocaloric fructose restriction and metabolic improvement in children with obesity and metabolic syndrome

Obesity (Silver Spring), 24 (2016), pp. 453-460 View PDF

CrossRefView Record in ScopusGoogle Scholar[63]J.M. Schwarz, S.M. Noworolski, A. Erkin-Cakmak, K. N.J., M.J. Wen, V.W. Tai, G.M. Jones, S.P. Palii, M. Velasco-Alin, K. Pan, B.W. Patterson, A. Gugliucci, R.H. Lustig, K. Mulligan, Impact of dietary fructose restriction on liver fat, de novo lipogenesis, and insulin kinetics in children with obesity, Gastroenterology 153 (2017) 743-752.

Google Scholar[64]

E.H. Lee, J.Y. Kim, H.R. Yang

Association between ectopic pancreatic and hepatic fat and metabolic risk factors in children with non-alcoholic fatty liver disease

Pediatric Obesity, 16 (10) (2021), Article e12793

View Record in ScopusGoogle Scholar[65]

J.A. Isserow, E.S. Siegelman, J. Mammone

Focal fatty infiltration of the pancreas: MR characterization with chemical shift imaging

Am. J. Roentgenol., 173 (5) (1999), pp. 1263-1265 View PDF

CrossRefView Record in ScopusGoogle Scholar[66]

E. Blaak

Gender differences in fat metabolism

Curr. Opin. Clin. Nutrit. Metabol. Care, 4 (6) (2001), pp. 499-502

View Record in ScopusGoogle Scholar[67]

W.B. Kannel, M.C. Hjortland, P.M. McNamara, T. Gordon

Menopause and risk of cardiovascular disease: the Framingham study

Ann. Int. Med., 85 (4) (1976), pp. 447-452 View PDF

CrossRefView Record in ScopusGoogle Scholar[68]

C.A. Derby, S.L. Crawford, R.C. Pasternak, M. Sowers, B. Sternfeld, K.A. Matthews

Lipid changes during the menopause transition in relation to age and weight: the Study of Women’s Health Across the Nation

Am. J. Epidemiol., 169 (11) (2009), pp. 1352-1361 View PDF

CrossRefView Record in ScopusGoogle Scholar[69]

S. Qian, Y. Tang, Q.-Q. Tang

Adipose tissue plasticity and the pleiotropic roles of BMP signaling

J. Biol. Chem., 296 (2021), p. 100678

ArticleDownload PDFView Record in ScopusGoogle Scholar[70]

U. Smith, B.B. Kahn

Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids

J. Int. Med., 280 (5) (2016), pp. 465-475 View PDF

CrossRefView Record in ScopusGoogle Scholar[71]

P. Arner

Fat tissue growth and development in humans

Nestle Nutrition Institute Workshop Series, 89 (2018), pp. 37-45 View PDF

CrossRefView Record in ScopusGoogle Scholar[72]

K.L. Spalding, E. Arner, P.O. Westermark, S. Bernard, B.A. Buchholz, O. Bergmann, L. Blomqvist, J. Hoffstedt, E. Naslund, T. Britton, H. Concha, M. Hassan, M. Ryden, J. Frisen, P. Arner

Dynamics of fat cell turnover in humans

Nature, 453 (7196) (2008), pp. 783-787 View PDF

CrossRefView Record in ScopusGoogle Scholar[73]

B.J. Feldman, R.S. Streeper, R.V. Farese Jr., K.R. Yamamoto

Myostatin modulates adipogenesis to generate adipocytes with favorable metabolic effects

PNAS, 103 (42) (2006), pp. 15675-15680 View PDF

CrossRefView Record in ScopusGoogle Scholar[74]

M.D. Lynes, Y.-H. Tseng

Deciphering adipose tissue heterogeneity

Ann. N. Y. Acad. Sci., 1411 (1) (2018), pp. 5-20 View PDF

CrossRefView Record in ScopusGoogle Scholar[75]

S. Ussar, K.Y. Lee, S.N. Dankel, J. Boucher, M.F. Haering, A. Kleinridders, T. Thomou, R. Xue, Y. Macotela, A.M. Cypess, Y.H. Tseng, G. Mellgren, C.R. Kahn

ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes

Sci. Transl. Med., 6 (247) (2014), p. 247ra103

View Record in ScopusGoogle Scholar[76]S. Cinti, Pink Adipocytes, Trends in endocrinology and metabolism: TEM 29(9) (2018) 651-666.

Google Scholar[77]

J.-B. Funcke, P.E. Scherer

Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication

J. Lipid Res., 60 (10) (2019), pp. 1648-1684 View PDF

CrossRefGoogle Scholar[78]

S. Heinonen, R. Jokinen, A. Rissanen, K.H. Pietiläinen

White adipose tissue mitochondrial metabolism in health and in obesity

Obes. Rev., 21 (2) (2020), Article e12958

View Record in ScopusGoogle Scholar[79]

L. Vishvanath, R.K. Gupta

Contribution of adipogenesis to healthy adipose tissue expansion in obesity

J. Clin. Invest., 129 (10) (2019), pp. 4022-4031 View PDF

CrossRefView Record in ScopusGoogle Scholar[80]G.H. Goossens, The Metabolic Phenotype in Obesity: Fat Mass, Body Fat Distribution, and Adipose Tissue Function, Obesity facts 10(3) (2017) 207-215.

Google Scholar[81]

A.C. Carpentier, D.P. Blondin, K.A. Virtanen, D. Richard, F. Haman, É.E. Turcotte

Brown adipose tissue energy metabolism in humans

Front. Endocrinol., 9 (2018), p. 447

View Record in ScopusGoogle Scholar[82]

A.M. Cypess, Y.-C. Chen, C. Sze, K. Wang, J. English, O. Chan, A.R. Holman, I. Tal, M.R. Palmer, G.M. Kolodny, C.R. Kahn

Cold but not sympathomimetics activates human brown adipose tissue in vivo

PNAS, 109 (25) (2012), pp. 10001-10005 View PDF

CrossRefView Record in ScopusGoogle Scholar[83]

L. Sidossis, S. Kajimura

Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis

J. Clin. Investig., 125 (2) (2015), pp. 478-486

View Record in ScopusGoogle Scholar[84]

W. Cao, K.W. Daniel, J. Robidoux, P. Puigserver, A.V. Medvedev, X. Bai, L.M. Floering, B.M. Spiegelman, S. Collins

p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene

Mol. Cell. Biol., 24 (7) (2004), pp. 3057-3067

View Record in ScopusGoogle Scholar[85]

A. Guilherme, B. Yenilmez, A.H. Bedard, F. Henriques, D. Liu, A. Lee, L. Goldstein, M. Kelly, S.M. Nicoloro, M. Chen, L. Weinstein, S. Collins, M.P. Czech

Control of adipocyte thermogenesis and lipogenesis through β3-adrenergic and thyroid hormone signal integration

Cell reports, 31 (5) (2020), p. 107598

ArticleDownload PDFView Record in ScopusGoogle Scholar[86]

P. Seale, B. Bjork, W. Yang, S. Kajimura, S. Chin, S. Kuang, A. Scimè, S. Devarakonda, H.M. Conroe, H. Erdjument-Bromage, P. Tempst, M.A. Rudnicki, D.R. Beier, B.M. Spiegelman

PRDM16 controls a brown fat/skeletal muscle switch

Nature, 454 (7207) (2008), pp. 961-967 View PDF

CrossRefView Record in ScopusGoogle Scholar[87]

S. Carobbio, A.-C. Guenantin, M. Bahri, S. Rodriguez-Fdez, F. Honig, I. Kamzolas, I. Samuelson, K. Long, S. Awad, D. Lukovic, S. Erceg, A. Bassett, S. Mendjan, L. Vallier, B.S. Rosen, D. Chiarugi, A. Vidal-Puig

Unraveling the developmental roadmap toward human brown adipose tissue

Stem Cell Rep., 16 (3) (2021), pp. 641-655

ArticleDownload PDFView Record in ScopusGoogle Scholar[88]

Y. Oguri, K. Shinoda, H. Kim, D.L. Alba, W.R. Bolus, Q. Wang, Z. Brown, R.N. Pradhan, K. Tajima, T. Yoneshiro, K. Ikeda, Y. Chen, R.T. Cheang, K. Tsujino, C.R. Kim, V.J. Greiner, R. Datta, C.D. Yang, K. Atabai, M.T. McManus, S.K. Koliwad, B.M. Spiegelman, S. Kajimura

CD81 controls beige fat progenitor cell growth and energy balance via FAK signaling

Cell, 182 (3) (2020), pp. 563-577.e20

ArticleDownload PDFView Record in ScopusGoogle Scholar[89]

Y. Chen, K. Ikeda, T. Yoneshiro, A. Scaramozza, K. Tajima, Q. Wang, K. Kim, K. Shinoda, C.H. Sponton, Z. Brown, A. Brack, S. Kajimura

Thermal stress induces glycolytic beige fat formation via a myogenic state

Nature, 565 (7738) (2019), pp. 180-185

Google Scholar[90]

G. Barbatelli, I. Murano, L. Madsen, Q. Hao, M. Jimenez, K. Kristiansen, J.P. Giacobino, R. De Matteis, S. Cinti

The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation, American journal of physiology

Endocrinol. Metabol., 298 (6) (2010), pp. E1244-E1253 View PDF

CrossRefView Record in ScopusGoogle Scholar[91]

A.-C. Pilkington, H.A. Paz, U.D. Wankhade

Beige Adipose Tissue Identification and Marker Specificity-Overview

Front. Endocrinol., 12 (2021), p. 599134

View Record in ScopusGoogle Scholar[92]

R.R. Stine, S.N. Shapira, H.-W. Lim, J. Ishibashi, M. Harms, K.-J. Won, P. Seale

EBF2 promotes the recruitment of beige adipocytes in white adipose tissue

Mol. Metabol., 5 (1) (2015), pp. 57-65

Google Scholar[93]

J. Heeren, H. Münzberg

Novel aspects of brown adipose tissue biology

Endocrinol. Metab. Clin. North Am., 42 (1) (2013), pp. 89-107

ArticleDownload PDFView Record in ScopusGoogle Scholar[94]

D. Moseti, A. Regassa, W.-K. Kim

Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules

Int. J. Mol. Sci., 17 (1) (2016), p. 124 View PDF

CrossRefView Record in ScopusGoogle Scholar[95]

M. Lehrke, G. Pascual, C.K. Glass, M.A. Lazar

Gaining weight: the keystone symposium on PPAR and LXR

Genes Dev., 19 (15) (2005), pp. 1737-1742 View PDF

CrossRefView Record in ScopusGoogle Scholar[96]

A. Chawla, E.J. Schwarz, D.D. Dimaculangan, M.A. Lazar

Peroxisome proliferator-activated receptor (PPAR) gamma: adipose-predominant expression and induction early in adipocyte differentiation

Endocrinology, 135 (2) (1994), pp. 798-800

View Record in ScopusGoogle Scholar[97]

J.M. Lehmann, L.B. Moore, T.A. Smith-Oliver, W.O. Wilkison, T.M. Willson, S.A. Kliewer

An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor y (PPARy)

J. Biol. Chem., 270 (22) (1995), pp. 12953-12956

ArticleDownload PDFView Record in ScopusGoogle Scholar[98]

S.R. Farmer

Transcriptional control of adipocyte formation

Cell Metab, 4 (4) (2006), pp. 263-273

ArticleDownload PDFView Record in ScopusGoogle Scholar[99]

C. Vigouroux, L. Fajas, E. Khallouf, M. Meier, G. Gyapay, O. Lascols, J. Auwerx, J. Weissenbach, J. Capeau, J. Magré

Human peroxisome proliferator-activated receptor-gamma2: genetic mapping, identification of a variant in the coding sequence, and exclusion as the gene responsible for lipoatrophic diabetes

Diabetes, 47 (3) (1998), pp. 490-492 View PDF

CrossRefView Record in ScopusGoogle Scholar[100]

E.D. Rosen, P. Sarraf, A.E. Troy, G. Bradwin, K. Moore, D.S. Milstone, B.M. Spiegelman, R.M. Mortensen

PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro

Mol Cell, 4 (4) (1999), pp. 611-617

ArticleDownload PDFView Record in ScopusGoogle Scholar[101]

R.P. Brun, P. Tontonoz, B.M. Forman, R. Ellis, J. Chen, R.M. Evans, B.M. Spiegelman

Differential activation of adipogenesis by multiple PPAR isoforms

Genes Dev, 10 (8) (1996), pp. 974-984 View PDF

CrossRefView Record in ScopusGoogle Scholar[102]

Y.X. Wang, C.H. Lee, S. Tiep, R.T. Yu, J. Ham, H. Kang, R.M. Evans

Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity

Cell, 113 (2) (2003), pp. 159-170

ArticleDownload PDFView Record in ScopusGoogle Scholar[103]

J.M. Peters, S.S. Lee, W. Li, J.M. Ward, O. Gavrilova, C. Everett, M.L. Reitman, L.D. Hudson, F.J. Gonzalez

Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta(delta)

Mol. Cell. Biol., 20 (14) (2000), pp. 5119-5128

View Record in ScopusGoogle Scholar[104]

M. Guerre-Millo, P. Gervois, E. Raspe, L. Madsen, P. Poulain, B. Derudas, J.M. Herbert, D.A. Winegar, T.M. Willson, J.C. Fruchart, R.K. Berge, B. Staels

Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity

J. Biol. Chem., 275 (22) (2000), pp. 16638-16642

ArticleDownload PDFView Record in ScopusGoogle Scholar[105]

S. Jeong, M. Yoon

Fenofibrate inhibits adipocyte hypertrophy and insulin resistance by activating adipose PPARalpha in high fat diet-induced obese mice

Exp. Mol. Med., 41 (6) (2009), pp. 397-405

View Record in ScopusGoogle Scholar[106]

A. Tsuchida, T. Yamauchi, S. Takekawa, Y. Hada, Y. Ito, T. Maki, T. Kadowaki

Peroxisome proliferator-activated receptor (PPAR)alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: comparison of activation of PPARalpha PPARgamma, and their combination

Diabetes, 54 (12) (2005), pp. 3358-3370 View PDF

CrossRefView Record in ScopusGoogle Scholar[107]

M. Das, M.R. Irvin, J. Sha, S. Aslibekyan, B. Hidalgo, R.T. Perry, D. Zhi, H.K. Tiwari, D. Absher, J.M. Ordovas, D.K. Arnett

Lipid changes due to fenofibrate treatment are not associated with changes in DNA methylation patterns in the GOLDN study

Front. Genet., 6 (2015), p. 304

View Record in ScopusGoogle Scholar[108]

F. Forcheron, A. Cachefo, S. Thevenon, C. Pinteur, M. Beylot

Mechanisms of the triglyceride- and cholesterol-lowering effect of fenofibrate in hyperlipidemic type 2 diabetic patients

Diabetes, 51 (12) (2002), pp. 3486-3491 View PDF

CrossRefView Record in ScopusGoogle Scholar[109]

W.R. Oliver Jr., J.L. Shenk, M.R. Snaith, C.S. Russell, K.D. Plunket, N.L. Bodkin, M.C. Lewis, D.A. Winegar, M.L. Sznaidman, M.H. Lambert, H.E. Xu, D.D. Sternbach, S.A. Kliewer, B.C. Hansen, T.M. Willson

A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport

PNAS, 98 (9) (2001), pp. 5306-5311

Google Scholar[110]

C.D. Kassotis, L. Masse, S. Kim, J.J. Schlezinger, T.F. Webster, H.M. Stapleton

Characterization of adipogenic chemicals in three different cell culture systems: implications for reproducibility based on cell source and handling

Sci. Rep., 7 (2017), p. 42104

View Record in ScopusGoogle Scholar[111]

P. Tontonoz, S. Singer, B.M. Forman, P. Sarraf, J.A. Fletcher, C.D. Fletcher, R.P. Brun, E. Mueller, S. Altiok, H. Oppenheim, R.M. Evans, B.M. Spiegelman

Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor

PNAS, 94 (1) (1997), pp. 237-241

View Record in ScopusGoogle Scholar[112]

S.S. Canan Koch, L.J. Dardashti, R.M. Cesario, G.E. Croston, M.F. Boehm, R.A. Heyman, A.M. Nadzan

Synthesis of retinoid X receptor-specific ligands that are potent inducers of adipogenesis in 3T3-L1 cells

J Med Chem, 42 (4) (1999), pp. 742-750

Google Scholar[113]

R. Nielsen, T.A. Pedersen, D. Hagenbeek, P. Moulos, R. Siersbaek, E. Megens, S. Denissov, M. Borgesen, K.J. Francoijs, S. Mandrup, H.G. Stunnenberg

Genome-wide profiling of PPARgamma:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis

Genes Dev, 22 (21) (2008), pp. 2953-2967 View PDF

CrossRefView Record in ScopusGoogle Scholar[114]

B.M. Shoucri, E.S. Martinez, T.J. Abreo, V.T. Hung, Z. Moosova, T. Shioda, B. Blumberg

Retinoid X receptor activation alters the chromatin landscape to commit mesenchymal stem cells to the adipose lineage

Endocrinology, 158 (10) (2017), pp. 3109-3125 View PDF

CrossRefGoogle Scholar[115]

B.M. Shoucri, V.T. Hung, R. Chamorro-García, T. Shioda, B. Blumberg

Retinoid X receptor activation during adipogenesis of female mesenchymal stem cells programs a dysfunctional adipocyte

Endocrinology, 159 (8) (2018), pp. 2863-2883 View PDF

CrossRefGoogle Scholar[116]

H.M. Sucov, E. Dyson, C.L. Gumeringer, J. Price, K.R. Chien, R.M. Evans

RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis

Genes Dev, 8 (9) (1994), pp. 1007-1018 View PDF

CrossRefView Record in ScopusGoogle Scholar[117]

T. Imai, M. Jiang, P. Chambon, D. Metzger

Impaired adipogenesis and lipolysis in the mouse upon selective ablation of the retinoid X receptor alpha mediated by a tamoxifen-inducible chimeric Cre recombinase (Cre-ERT2) in adipocytes

PNAS, 98 (1) (2001), pp. 224-228

View Record in ScopusGoogle Scholar[118]

R. Mukherjee, P.J. Davies, D.L. Crombie, E.D. Bischoff, R.M. Cesario, L. Jow, L.G. Hamann, M.F. Boehm, C.E. Mondon, A.M. Nadzan, J.R. Paterniti Jr., R.A. Heyman

Sensitization of diabetic and obese mice to insulin by retinoid X receptor agonists

Nature, 386 (6623) (1997), pp. 407-410

View Record in ScopusGoogle Scholar[119]

M.K. Sadasivuni, B.M. Reddy, J. Singh, M.O. Anup, V. Sunil, M.N. Lakshmi, S. Yogeshwari, S.K. Chacko, T.L. Pooja, A. Dandu, C. Harish, A.S. Gopala, S. Pratibha, B.S. Naveenkumar, P.M. Pallavi, M.K. Verma, Y. Moolemath, B.P. Somesh, M.V. Venkataranganna, M.R. Jagannath

CNX-013-B2, a unique pan tissue acting rexinoid, modulates several nuclear receptors and controls multiple risk factors of the metabolic syndrome without risk of hypertriglyceridemia, hepatomegaly and body weight gain in animal models

Diabetol Metab Syndr, 6 (1) (2014), p. 83

View Record in ScopusGoogle Scholar[120]

V. Emilsson, J. O’Dowd, S. Wang, Y.L. Liu, M. Sennitt, R. Heyman, M.A. Cawthorne

The effects of rexinoids and rosiglitazone on body weight and uncoupling protein isoform expression in the Zucker fa/fa rat

Metabolism, 49 (12) (2000), pp. 1610-1615

ArticleDownload PDFView Record in ScopusGoogle Scholar[121]

L.T. Farol, K.B. Hymes

Bexarotene: a clinical review

Expert Rev. Anticancer Ther., 4 (2) (2004), pp. 180-188 View PDF

CrossRefView Record in ScopusGoogle Scholar[122]

J. de Vries-van, W. der Weij, L.H. de Haan, M. Kuif, H.L. Oei, J.W. van der Hoorn, L.M. Havekes, H.M. Princen, J.A. Romijn, J.W. Smit, P.C. Rensen

Bexarotene induces dyslipidemia by increased very low-density lipoprotein production and cholesteryl ester transfer protein-mediated reduction of high-density lipoprotein

Endocrinology, 150 (5) (2009), pp. 2368-2375

Google Scholar[123]

J.A. Pinaire, A. Reifel-Miller

Therapeutic potential of retinoid x receptor modulators for the treatment of the metabolic syndrome

PPAR Res, 2007 (2007), p. 94156

View Record in ScopusGoogle Scholar[124]

A.I. Shulman, D.J. Mangelsdorf

Retinoid x receptor heterodimers in the metabolic syndrome

New England J. Med., 353 (6) (2005), pp. 604-615

View Record in ScopusGoogle Scholar[125]

S.M. Ulven, K.T. Dalen, J.A. Gustafsson, H.I. Nebb

LXR is crucial in lipid metabolism

Prostaglandins Leukot Essent Fatty Acids, 73 (1) (2005), pp. 59-63

ArticleDownload PDFView Record in ScopusGoogle Scholar[126]

N.Y. Kalaany, K.C. Gauthier, A.M. Zavacki, P.P. Mammen, T. Kitazume, J.A. Peterson, J.D. Horton, D.J. Garry, A.C. Bianco, D.J. Mangelsdorf

LXRs regulate the balance between fat storage and oxidation

Cell Metab, 1 (4) (2005), pp. 231-244

ArticleDownload PDFView Record in ScopusGoogle Scholar[127]

J.B. Seo, H.M. Moon, W.S. Kim, Y.S. Lee, H.W. Jeong, E.J. Yoo, J. Ham, H. Kang, M.G. Park, K.R. Steffensen, T.M. Stulnig, J.A. Gustafsson, S.D. Park, J.B. Kim

Activated liver X receptors stimulate adipocyte differentiation through induction of peroxisome proliferator-activated receptor gamma expression

Mol. Cell Biol., 24 (8) (2004), pp. 3430-3444

View Record in ScopusGoogle Scholar[128]

L.K. Juvet, S.M. Andresen, G.U. Schuster, K.T. Dalen, K.A. Tobin, K. Hollung, F. Haugen, S. Jacinto, S.M. Ulven, K. Bamberg, J.A. Gustafsson, H.I. Nebb

On the role of liver X receptors in lipid accumulation in adipocytes

Mol. Endocrinol., 17 (2) (2003), pp. 172-182

View Record in ScopusGoogle Scholar[129]

B.M. Stenson, M. Ryden, N. Venteclef, I. Dahlman, A.M. Pettersson, A. Mairal, G. Astrom, L. Blomqvist, V. Wang, J.W. Jocken, K. Clement, D. Langin, P. Arner, J. Laurencikiene

Liver X receptor (LXR) regulates human adipocyte lipolysis

J. Biol. Chem., 286 (1) (2011), pp. 370-379

ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[130]

I. Gerin, V.W. Dolinsky, J.G. Shackman, R.T. Kennedy, S.H. Chiang, C.F. Burant, K.R. Steffensen, J.A. Gustafsson, O.A. MacDougald

LXRbeta is required for adipocyte growth, glucose homeostasis, and beta cell function

J. Biol. Chem., 280 (24) (2005), pp. 23024-23031

ArticleDownload PDFView Record in ScopusGoogle Scholar[131]

M. Korach-Andre, A. Archer, R.P. Barros, P. Parini, J.A. Gustafsson

Both liver-X receptor (LXR) isoforms control energy expenditure by regulating brown adipose tissue activity

PNAS, 108 (1) (2011), pp. 403-408 View PDF

CrossRefView Record in ScopusGoogle Scholar[132]

A. Archer, E. Stolarczyk, M.L. Doria, L. Helguero, R. Domingues, J.K. Howard, A. Mode, M. Korach-Andre, J.A. Gustafsson

LXR activation by GW3965 alters fat tissue distribution and adipose tissue inflammation in ob/ob female mice

J. Lipid Res., 54 (5) (2013), pp. 1300-1311

ArticleDownload PDFView Record in ScopusGoogle Scholar[133]

I. Dahlman, M. Nilsson, H. Jiao, J. Hoffstedt, C.M. Lindgren, K. Humphreys, J. Kere, J.A. Gustafsson, P. Arner, K. Dahlman-Wright

Liver X receptor gene polymorphisms and adipose tissue expression levels in obesity

Pharmacogenet Genomics, 16 (12) (2006), pp. 881-889 View PDF

CrossRefView Record in ScopusGoogle Scholar[134]

T.G. Kirchgessner, P. Sleph, J. Ostrowski, J. Lupisella, C.S. Ryan, X. Liu, G. Fernando, D. Grimm, P. Shipkova, R. Zhang, R. Garcia, J. Zhu, A. He, H. Malone, R. Martin, K. Behnia, Z. Wang, Y.C. Barrett, R.J. Garmise, L. Yuan, J. Zhang, M.D. Gandhi, P. Wastall, T. Li, S. Du, L. Salvador, R. Mohan, G.H. Cantor, E. Kick, J. Lee, R.J. Frost

Beneficial and adverse effects of an LXR agonist on human lipid and lipoprotein metabolism and circulating neutrophils

Cell Metab, 24 (2) (2016), pp. 223-233

ArticleDownload PDFView Record in ScopusGoogle Scholar[135]

J. Gao, W. Xie

Targeting xenobiotic receptors PXR and CAR for metabolic diseases

Trends Pharmacol. Sci., 33 (10) (2012), pp. 552-558

ArticleDownload PDFView Record in ScopusGoogle Scholar[136]

A. Moreau, M.J. Vilarem, P. Maurel, J.M. Pascussi

Xenoreceptors CAR and PXR activation and consequences on lipid metabolism, glucose homeostasis, and inflammatory response

Mol. Pharm., 5 (1) (2008), pp. 35-41 View PDF

CrossRefGoogle Scholar[137]

J. Zhou, M. Febbraio, T. Wada, Y. Zhai, R. Kuruba, J. He, J.H. Lee, S. Khadem, S. Ren, S. Li, R.L. Silverstein, W. Xie

Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis

Gastroenterology, 134 (2) (2008), pp. 556-567

Google Scholar[138]

J. He, J. Gao, M. Xu, S. Ren, M. Stefanovic-Racic, R.M. O’Doherty, W. Xie

PXR ablation alleviates diet-induced and genetic obesity and insulin resistance in mice

Diabetes, 62 (6) (2013), pp. 1876-1887 View PDF

CrossRefView Record in ScopusGoogle Scholar[139]

T. Wada, J. Gao, W. Xie

PXR and CAR in energy metabolism. Trends in endocrinology and metabolism

TEM, 20 (6) (2009), pp. 273-279

ArticleDownload PDFView Record in ScopusGoogle Scholar[140]

J. Gao, J. He, Y. Zhai, T. Wada, W. Xie

The constitutive androstane receptor is an anti-obesity nuclear receptor that improves insulin sensitivity

J. Biol. Chem., 284 (38) (2009), pp. 25984-25992

ArticleDownload PDFView Record in ScopusGoogle Scholar[141]

Y. Jiao, Y. Lu, X.Y. Li

Farnesoid X receptor: a master regulator of hepatic triglyceride and glucose homeostasis

Acta Pharmacol. Sin, 36 (1) (2015), pp. 44-50 View PDF

CrossRefView Record in ScopusGoogle Scholar[142]

J. Prawitt, S. Caron, B. Staels

How to modulate FXR activity to treat the metabolic syndrome

Drug. Discov. Today: Disease Mechanisms, 6 (1–4) (2009), pp. e55-e64

ArticleDownload PDFView Record in ScopusGoogle Scholar[143]

G. Rizzo, M. Disante, A. Mencarelli, B. Renga, A. Gioiello, R. Pellicciari, S. Fiorucci

The farnesoid X receptor promotes adipocyte differentiation and regulates adipose cell function in vivo

Mol. Pharmacol., 70 (4) (2006), pp. 1164-1173 View PDF

CrossRefView Record in ScopusGoogle Scholar[144]

B. Cariou, K. van Harmelen, D. Duran-Sandoval, T.H. van Dijk, A. Grefhorst, M. Abdelkarim, S. Caron, G. Torpier, J.C. Fruchart, F.J. Gonzalez, F. Kuipers, B. Staels

The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice

J. Biol. Chem., 281 (16) (2006), pp. 11039-11049

ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[145]

J.Y. Yang, M.A. Della-Fera, C.A. Baile

Guggulsterone inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 cells

Obesity (Silver Spring), 16 (1) (2008), pp. 16-22 View PDF

CrossRefGoogle Scholar[146]

M. Abdelkarim, S. Caron, C. Duhem, J. Prawitt, J. Dumont, A. Lucas, E. Bouchaert, O. Briand, J. Brozek, F. Kuipers, C. Fievet, B. Cariou, B. Staels

The farnesoid X receptor regulates adipocyte differentiation and function by promoting peroxisome proliferator-activated receptor-gamma and interfering with the Wnt/beta-catenin pathways

J. Biol. Chem., 285 (47) (2010), pp. 36759-36767

ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[147]

J. Prawitt, M. Abdelkarim, J.H. Stroeve, I. Popescu, H. Duez, V.R. Velagapudi, J. Dumont, E. Bouchaert, T.H. van Dijk, A. Lucas, E. Dorchies, M. Daoudi, S. Lestavel, F.J. Gonzalez, M. Oresic, B. Cariou, F. Kuipers, S. Caron, B. Staels

Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity

Diabetes, 60 (7) (2011), pp. 1861-1871 View PDF

CrossRefView Record in ScopusGoogle Scholar[148]

Y. Zhang, X. Ge, L.A. Heemstra, W.D. Chen, J. Xu, J.L. Smith, H. Ma, N. Kasim, P.A. Edwards, C.M. Novak

Loss of FXR protects against diet-induced obesity and accelerates liver carcinogenesis in ob/ob mice

Mol. Endocrinol., 26 (2) (2012), pp. 272-280 View PDF

CrossRefView Record in ScopusGoogle Scholar[149]

E. Maneschi, L. Vignozzi, A. Morelli, T. Mello, S. Filippi, I. Cellai, P. Comeglio, E. Sarchielli, A. Calcagno, B. Mazzanti, R. Vettor, G.B. Vannelli, L. Adorini, M. Maggi

FXR activation normalizes insulin sensitivity in visceral preadipocytes of a rabbit model of MetS

J. Endocrinol., 218 (2) (2013), pp. 215-231

View Record in ScopusGoogle Scholar[150]

M. Watanabe, Y. Horai, S.M. Houten, K. Morimoto, T. Sugizaki, E. Arita, C. Mataki, H. Sato, Y. Tanigawara, K. Schoonjans, H. Itoh, J. Auwerx

Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure

J. Biol. Chem., 286 (30) (2011), pp. 26913-26920

ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[151]

D.J. Rader

Liver X receptor and farnesoid X receptor as therapeutic targets

Am. J. Cardiol., 100 (11A) (2007), pp. 15N-19N

Google Scholar[152]

Y. Lu, Z. Ma, Z. Zhang, X. Xiong, X. Wang, H. Zhang, G. Shi, X. Xia, G. Ning, X. Li

Yin Yang 1 promotes hepatic steatosis through repression of farnesoid X receptor in obese mice

Gut, 63 (1) (2014), pp. 170-178

Google Scholar[153]

B.E. McIntosh, J.B. Hogenesch, C.A. Bradfield

Mammalian Per-Arnt-Sim proteins in environmental adaptation

Annu. Rev. Physiol., 72 (2010), pp. 625-645 View PDF

CrossRefView Record in ScopusGoogle Scholar[154]

D.C. de Almeida, L.S.M. Evangelista, N.O.S. Câmara

Role of aryl hydrocarbon receptor in mesenchymal stromal cell activation: a minireview

World J. Stem. Cells, 9 (9) (2017), pp. 152-158

View Record in ScopusGoogle Scholar[155]

C.J. Henderson, L.A. McLaughlin, M. Osuna-Cabello, M. Taylor, I. Gilbert, A.W. McLaren, C.R. Wolf

Application of a novel regulatable Cre recombinase system to define the role of liver and gut metabolism in drug oral bioavailability

Biochem. J, 465 (3) (2015), pp. 479-488

View Record in ScopusGoogle Scholar[156]

Y. Shimizu, Y. Nakatsuru, M. Ichinose, Y. Takahashi, H. Kume, J. Mimura, Y. Fujii-Kuriyama, T. Ishikawa

Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor

Proc. Natl. Acad. Sci., 97 (2) (2000), pp. 779-782

View Record in ScopusGoogle Scholar[157]

P. Nguyen, V. Leray, M. Diez, S. Serisier, J. Le Bloc’h, B. Siliart, H. Dumon

Liver lipid metabolism

J. Anim. Physiol. Anim. Nutrit., 92 (3) (2008), pp. 272-283 View PDF

CrossRefView Record in ScopusGoogle Scholar[158]

R. Tanos, R.D. Patel, I.A. Murray, P.B. Smith, A.D. Patterson, G.H. Perdew

Aryl hydrocarbon receptor regulates the cholesterol biosynthetic pathway in a dioxin response element-independent manner

Hepatology (Baltimore Md.), 55 (6) (2012), pp. 1994-2004 View PDF

CrossRefView Record in ScopusGoogle Scholar[159]

R. Tanos, I.A. Murray, P.B. Smith, A. Patterson, G.H. Perdew

Role of the Ah receptor in homeostatic control of fatty acid synthesis in the liver

Toxicol. Sci.: Off. J. Soc. Toxicol., 129 (2) (2012), pp. 372-379 View PDF

CrossRefView Record in ScopusGoogle Scholar[160]

N.G. Girer, D. Carter, N. Bhattarai, M. Mustafa, L. Denner, C. Porter, C.J. Elferink

Inducible loss of the aryl hydrocarbon receptor activates perigonadal white fat respiration and brown fat thermogenesis via fibroblast growth factor 21

Int. J. Mol. Sci., 20 (4) (2019)

Google Scholar[161]

J. Beltrand, K. Busiah, L. Vaivre-Douret, A.L. Fauret, M. Berdugo, H. Cavé, M. Polak

Neonatal diabetes mellitus

Front Pediatr, 8 (2020), p. 540718

View Record in ScopusGoogle Scholar[162]

M. Plamper, B. Gohlke, F. Schreiner, J. Woelfle

Mecasermin in insulin receptor-related severe insulin resistance syndromes: case report and review of the literature

Int. J. Mol. Sci., 19 (5) (2018), p. 1268 View PDF

CrossRefView Record in ScopusGoogle Scholar[163]

J. Boucher, S. Softic, A. El Ouaamari, M.T. Krumpoch, A. Kleinridders, R.N. Kulkarni, B.T. O’Neill, C.R. Kahn

Differential roles of insulin and IGF-1 receptors in adipose tissue development and function

Diabetes, 65 (8) (2016), pp. 2201-2213 View PDF

CrossRefView Record in ScopusGoogle Scholar[164]

E.P. Homan, B.B. Brandão, S. Softic, A. El Ouaamari, B.T. O’Neill, R.N. Kulkarni, J.K. Kim, C.R. Kahn

Differential roles of FOXO transcription factors on insulin action in brown and white adipose tissue

J. Clin. Invest., 131 (19) (2021)

Google Scholar[165]

A. Nadal, A.B. Ropero, O. Laribi, M. Maillet, E. Fuentes, B. Soria

Nongenomic actions of estrogens and xenoestrogens by binding at a plasma membrane receptor unrelated to estrogen receptor alpha and estrogen receptor beta

PNAS, 97 (21) (2000), pp. 11603-11608

View Record in ScopusGoogle Scholar[166]

N. Fuentes, P. Silveyra

Estrogen receptor signaling mechanisms

Adv. Protein. Chem. Struct. Biol., 116 (2019), pp. 135-170

ArticleDownload PDFView Record in ScopusGoogle Scholar[167]

C.B. Jasik, R.H. Lustig

Adolescent obesity and puberty: the “perfect storm”

Ann. N Y Acad. Sci., 1135 (2008), pp. 265-279 View PDF

CrossRefView Record in ScopusGoogle Scholar[168]

M.K. Crocker, E.A. Stern, N.M. Sedaka, L.B. Shomaker, S.M. Brady, A.H. Ali, T.H. Shawker, V.S. Hubbard, J.A. Yanovski

Sexual dimorphisms in the associations of BMI and body fat with indices of pubertal development in girls and boys

J. Clin. Endocrinol. Metabol., 99 (8) (2014), pp. E1519-E1529 View PDF

CrossRefView Record in ScopusGoogle Scholar[169]

S.R. Davis, C. Castelo-Branco, P. Chedraui, M.A. Lumsden, R.E. Nappi, D. Shah, P. Villaseca

Understanding weight gain at menopause

Climacteric, 15 (2012), pp. 419-429 View PDF

CrossRefView Record in ScopusGoogle Scholar[170]

P.S. Cooke, A. Naaz

Role of estrogens in adipocyte development and function

Exp. Biol. Med. (Maywood), 229 (11) (2004), pp. 1127-1135 View PDF

CrossRefView Record in ScopusGoogle Scholar[171]

M.N. Dieudonne, R. Pecquery, M.C. Leneveu, Y. Giudicelli

Opposite effects of androgens and estrogens on adipogenesis in rat preadipocytes: evidence for sex and site-related specificities and possible involvement of insulin-like growth factor 1 receptor and peroxisome proliferator-activated receptor gamma2

Endocrinology, 141 (2) (2000), pp. 649-656

View Record in ScopusGoogle Scholar[172]

D.A. Roncari, R.L. Van

Promotion of human adipocyte precursor replication by 17beta-estradiol in culture

J. Clin. Invest., 62 (3) (1978), pp. 503-508 View PDF

CrossRefView Record in ScopusGoogle Scholar[173]

P.A. Heine, J.A. Taylor, G.A. Iwamoto, D.B. Lubahn, P.S. Cooke

Increased adipose tissue in male and female estrogen receptor-alpha knockout mice

PNAS, 97 (23) (2000), pp. 12729-12734

View Record in ScopusGoogle Scholar[174]

C. Ohlsson, N. Hellberg, P. Parini, O. Vidal, Y.M. Bohlooly, M. Rudling, M.K. Lindberg, M. Warner, B. Angelin, J.A. Gustafsson

Obesity and disturbed lipoprotein profile in estrogen receptor-alpha-deficient male mice

Biochem. Biophys. Res. Commun., 278 (3) (2000), pp. 640-645

ArticleDownload PDFView Record in ScopusGoogle Scholar[175]

R.E. Stubbins, V.B. Holcomb, J. Hong, N.P. Nunez

Estrogen modulates abdominal adiposity and protects female mice from obesity and impaired glucose tolerance

Eur. J. Nutr., 51 (7) (2012), pp. 861-870 View PDF

CrossRefView Record in ScopusGoogle Scholar[176]

Y. Murata, K.M. Robertson, M.E. Jones, E.R. Simpson

Effect of estrogen deficiency in the male: the ArKO mouse model

Mol. Cell Endocrinol., 193 (1–2) (2002), pp. 7-12

ArticleDownload PDFView Record in ScopusGoogle Scholar[177]

M.E. Jones, A.W. Thorburn, K.L. Britt, K.N. Hewitt, M.L. Misso, N.G. Wreford, J. Proietto, O.K. Oz, B.J. Leury, K.M. Robertson, S. Yao, E.R. Simpson

Aromatase-deficient (ArKO) mice accumulate excess adipose tissue

J. Steroid. Biochem. Mol. Biol., 79 (1–5) (2001), pp. 3-9

ArticleDownload PDFView Record in ScopusGoogle Scholar[178]

M.E. Jones, A.W. Thorburn, K.L. Britt, K.N. Hewitt, N.G. Wreford, J. Proietto, O.K. Oz, B.J. Leury, K.M. Robertson, S. Yao, E.R. Simpson

Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity

PNAS, 97 (23) (2000), pp. 12735-12740

View Record in ScopusGoogle Scholar[179]

L. Hong, A. Colpan, I.A. Peptan

Modulations of 17-beta estradiol on osteogenic and adipogenic differentiations of human mesenchymal stem cells

Tissue Eng, 12 (10) (2006), pp. 2747-2753 View PDF

CrossRefView Record in ScopusGoogle Scholar[180]

P. Zhu, J.M. Yuen, K.W. Sham, C.H. Cheng

GPER mediates the inhibitory actions of estrogen on adipogenesis in 3T3-L1 cells through perturbation of mitotic clonal expansion

Gen. Comp. Endocrinol., 193 (2013), pp. 19-26

ArticleDownload PDFView Record in ScopusGoogle Scholar[181]

K. Blouin, A. Boivin, A. Tchernof

Androgens and body fat distribution

J. Steroid. Biochem. Mol. Biol., 108 (3–5) (2008), pp. 272-280

ArticleDownload PDFView Record in ScopusGoogle Scholar[182]

M.W. O’Reilly, P.J. House, J.W. Tomlinson

Understanding androgen action in adipose tissue

J. Steroid. Biochem. Mol. Biol., 143 (2014), pp. 277-284

ArticleDownload PDFView Record in ScopusGoogle Scholar[183]

V. Gupta, S. Bhasin, W. Guo, R. Singh, R. Miki, P. Chauhan, K. Choong, T. Tchkonia, N.K. Lebrasseur, J.N. Flanagan, J.A. Hamilton, J.C. Viereck, N.S. Narula, J.L. Kirkland, R. Jasuja

Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes

Mol. Cell Endocrinol., 296 (1–2) (2008), pp. 32-40

ArticleDownload PDFView Record in ScopusGoogle Scholar[184]

G. Chazenbalk, P. Singh, D. Irge, A. Shah, D.H. Abbott, D.A. Dumesic

Androgens inhibit adipogenesis during human adipose stem cell commitment to preadipocyte formation

Steroids, 78 (9) (2013), pp. 920-926

ArticleDownload PDFView Record in ScopusGoogle Scholar[185]

R. Singh, J.N. Artaza, W.E. Taylor, N.F. Gonzalez-Cadavid, S. Bhasin

Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway

Endocrinology, 144 (11) (2003), pp. 5081-5088

View Record in ScopusGoogle Scholar[186]

T. Sato, T. Matsumoto, T. Yamada, T. Watanabe, H. Kawano, S. Kato

Late onset of obesity in male androgen receptor-deficient (AR KO) mice

Biochem. Biophys. Res. Commun., 300 (1) (2003), pp. 167-171

ArticleDownload PDFView Record in ScopusGoogle Scholar[187]

T. Yanase, W. Fan, K. Kyoya, L. Min, R. Takayanagi, S. Kato, H. Nawata

Androgens and metabolic syndrome: lessons from androgen receptor knock out (ARKO) mice

J. Steroid. Biochem. Mol. Biol., 109 (3–5) (2008), pp. 254-257

ArticleDownload PDFView Record in ScopusGoogle Scholar[188]

J.B. Fagman, A.S. Wilhelmson, B.M. Motta, C. Pirazzi, C. Alexanderson, K. De Gendt, G. Verhoeven, A. Holmang, F. Anesten, J.O. Jansson, M. Levin, J. Boren, C. Ohlsson, A. Krettek, S. Romeo, A. Tivesten

The androgen receptor confers protection against diet-induced atherosclerosis, obesity, and dyslipidemia in female mice

FASEB J.: Off. Publicat. Federat. Am. Soc. Exp. Biol., 29 (4) (2015), pp. 1540-1550 View PDF

CrossRefView Record in ScopusGoogle Scholar[189]

S. Yeh, M.Y. Tsai, Q. Xu, X.M. Mu, H. Lardy, K.E. Huang, H. Lin, S.D. Yeh, S. Altuwaijri, X. Zhou, L. Xing, B.F. Boyce, M.C. Hung, S. Zhang, L. Gan, C. Chang

Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues

PNAS, 99 (21) (2002), pp. 13498-13503

View Record in ScopusGoogle Scholar[190]

W. Fan, T. Yanase, M. Nomura, T. Okabe, K. Goto, T. Sato, H. Kawano, S. Kato, H. Nawata

Androgen receptor null male mice develop late-onset obesity caused by decreased energy expenditure and lipolytic activity but show normal insulin sensitivity with high adiponectin secretion

Diabetes, 54 (4) (2005), pp. 1000-1008 View PDF

CrossRefView Record in ScopusGoogle Scholar[191]

K. Blouin, M. Nadeau, M. Perreault, A. Veilleux, R. Drolet, P. Marceau, J. Mailloux, V. Luu-The, A. Tchernof

Effects of androgens on adipocyte differentiation and adipose tissue explant metabolism in men and women

Clin. Endocrinol., 72 (2) (2010), pp. 176-188 View PDF

CrossRefView Record in ScopusGoogle Scholar[192]

C. Mammi, M. Calanchini, A. Antelmi, F. Cinti, G.M. Rosano, A. Lenzi, M. Caprio, A. Fabbri

Androgens and adipose tissue in males: a complex and reciprocal interplay

Int. J. Endocrinol., 2012 (2012), Article 789653

View Record in ScopusGoogle Scholar[193]

E. Diamanti-Kandarakis, A. Mitrakou, S. Raptis, G. Tolis, A.J. Duleba

The effect of a pure antiandrogen receptor blocker, flutamide, on the lipid profile in the polycystic ovary syndrome

J. Clin. Endocrinol. Metabol., 83 (8) (1998), pp. 2699-2705

View Record in ScopusGoogle Scholar[194]

L. Ibanez, K. Ong, A. Ferrer, R. Amin, D. Dunger, F. de Zegher

Low-dose flutamide-metformin therapy reverses insulin resistance and reduces fat mass in nonobese adolescents with ovarian hyperandrogenism

J. Clin. Endocrinol. Metabol., 88 (6) (2003), pp. 2600-2606

View Record in ScopusGoogle Scholar[195]

L. Ibanez, F. De Zegher

Flutamide-metformin therapy to reduce fat mass in hyperinsulinemic ovarian hyperandrogenism: effects in adolescents and in women on third-generation oral contraception

J. Clin. Endocrinol. Metabol., 88 (10) (2003), pp. 4720-4724

View Record in ScopusGoogle Scholar[196]

R. Pasquali

Obesity and androgens: facts and perspectives

Fertil Steril, 85 (5) (2006), pp. 1319-1340

ArticleDownload PDFView Record in ScopusGoogle Scholar[197]

B.J. Feldman

Glucocorticoids influence on mesenchymal stem cells and implications for metabolic disease

Pediatr Res, 65 (2) (2009), pp. 249-251 View PDF

CrossRefGoogle Scholar[198]

B.R. Walker, S. Soderberg, B. Lindahl, T. Olsson

Independent effects of obesity and cortisol in predicting cardiovascular risk factors in men and women

J. Intern. Med., 247 (2) (2000), pp. 198-204

View Record in ScopusGoogle Scholar[199]

R.T. Pickering, M.J. Lee, K. Karastergiou, A. Gower, S.K. Fried

Depot dependent effects of dexamethasone on gene expression in human omental and abdominal subcutaneous adipose tissues from obese women

PLoS ONE, 11 (12) (2016), Article e0167337 View PDF

CrossRefView Record in ScopusGoogle Scholar[200]

E.B. Geer, W. Shen, E. Strohmayer, K.D. Post, P.U. Freda

Body composition and cardiovascular risk markers after remission of Cushing’s disease: a prospective study using whole-body MRI

J. Clin. Endocrinol. Metabol., 97 (5) (2012), pp. 1702-1711 View PDF

CrossRefView Record in ScopusGoogle Scholar[201]

H. Masuzaki, J. Paterson, H. Shinyama, N.M. Morton, J.J. Mullins, J.R. Seckl, J.S. Flier

A transgenic model of visceral obesity and the metabolic syndrome

Science, 294 (5549) (2001), pp. 2166-2170

View Record in ScopusGoogle Scholar[202]

K. John, J.S. Marino, E.R. Sanchez, T.D. Hinds Jr.

The glucocorticoid receptor: cause of or cure for obesity?

Am. J. Physiol. Endocrinol. Metabol., 310 (4) (2016), pp. E249-E257 View PDF

CrossRefView Record in ScopusGoogle Scholar[203]

D. Contador, F. Ezquer, M. Espinosa, M. Arango-Rodriguez, C. Puebla, L. Sobrevia, P. Conget

Dexamethasone and rosiglitazone are sufficient and necessary for producing functional adipocytes from mesenchymal stem cells

Exp. Biol. Med. (Maywood), 240 (9) (2015), pp. 1235-1246 View PDF

CrossRefView Record in ScopusGoogle Scholar[204]

M. Asada, A. Rauch, H. Shimizu, H. Maruyama, S. Miyaki, M. Shibamori, H. Kawasome, H. Ishiyama, J. Tuckermann, H. Asahara

DNA binding-dependent glucocorticoid receptor activity promotes adipogenesis via Kruppel-like factor 15 gene expression

Lab. Invest., 91 (2) (2011), pp. 203-215 View PDF

CrossRefView Record in ScopusGoogle Scholar[205]

A.J. Vidal-Puig, R.V. Considine, M. Jimenez-Linan, A. Werman, W.J. Pories, J.F. Caro, J.S. Flier

Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids

J. Clin. Invest., 99 (10) (1997), pp. 2416-2422 View PDF

CrossRefView Record in ScopusGoogle Scholar[206]

R.M. Sargis, D.N. Johnson, R.A. Choudhury, M.J. Brady

Environmental endocrine disruptors promote adipogenesis in the 3T3-L1 cell line through glucocorticoid receptor activation

Obesity (Silver Spring Md.), 18 (7) (2010), pp. 1283-1288 View PDF

CrossRefView Record in ScopusGoogle Scholar[207]M.J. Lee, S.K. Fried, The glucocorticoid receptor, not the mineralocorticoid receptor, plays the dominant role in adipogenesis and adipokine production in human adipocytes, Int. J. Obesity (2005) 38(9) (2014) 1228-33.

Google Scholar[208]

C. Pantoja, J.T. Huff, K.R. Yamamoto

Glucocorticoid signaling defines a novel commitment state during adipogenesis in vitro

Mol. Biol. Cell, 19 (10) (2008), pp. 4032-4041

View Record in ScopusGoogle Scholar[209]

S. Whirledge, D.B. DeFranco

Glucocorticoid signaling in health and disease: insights from tissue-specific GR knockout mice

Endocrinol., 159 (1) (2018), pp. 46-64 View PDF

CrossRefGoogle Scholar[210]

E.E. Kershaw, N.M. Morton, H. Dhillon, L. Ramage, J.R. Seckl, J.S. Flier

Adipocyte-specific glucocorticoid inactivation protects against diet-induced obesity

Diabetes, 54 (4) (2005), pp. 1023-1031 View PDF

CrossRefView Record in ScopusGoogle Scholar[211]

K.A. Iwen, E. Schroder, G. Brabant

Thyroid hormones and the metabolic syndrome

Eur. Thyroid J., 2 (2) (2013), pp. 83-92 View PDF

CrossRefView Record in ScopusGoogle Scholar[212]

M.J. Obregon

Thyroid hormone and adipocyte differentiation

Thyroid, 18 (2) (2008), pp. 185-195 View PDF

CrossRefView Record in ScopusGoogle Scholar[213]

C. Darimont, D. Gaillard, G. Ailhaud, R. Negrel

Terminal differentiation of mouse preadipocyte cells: adipogenic and antimitogenic role of triiodothyronine

Mol. Cell Endocrinol., 98 (1) (1993), pp. 67-73

ArticleDownload PDFView Record in ScopusGoogle Scholar[214]

W. Jiang, T. Miyamoto, T. Kakizawa, T. Sakuma, S. Nishio, T. Takeda, S. Suzuki, K. Hashizume

Expression of thyroid hormone receptor alpha in 3T3-L1 adipocytes; triiodothyronine increases the expression of lipogenic enzyme and triglyceride accumulation

J. Endocrinol., 182 (2) (2004), pp. 295-302 View PDF

CrossRefView Record in ScopusGoogle Scholar[215]

P. Pelletier, K. Gauthier, O. Sideleva, J. Samarut, J.E. Silva

Mice lacking the thyroid hormone receptor-alpha gene spend more energy in thermogenesis, burn more fat, and are less sensitive to high-fat diet-induced obesity

Endocrinology, 149 (12) (2008), pp. 6471-6486 View PDF

CrossRefView Record in ScopusGoogle Scholar[216]

Y.Y. Liu, J.J. Schultz, G.A. Brent

A thyroid hormone receptor alpha gene mutation (P398H) is associated with visceral adiposity and impaired catecholamine-stimulated lipolysis in mice

J. Biol. Chem., 278 (40) (2003), pp. 38913-38920

ArticleDownload PDFView Record in ScopusGoogle Scholar[217]

R.E. Weiss, Y. Murata, K. Cua, Y. Hayashi, H. Seo, S. Refetoff

Thyroid hormone action on liver, heart, and energy expenditure in thyroid hormone receptor beta-deficient mice

Endocrinology, 139 (12) (1998), pp. 4945-4952

View Record in ScopusGoogle Scholar[218]

C. Lu, S.Y. Cheng

Thyroid hormone receptors regulate adipogenesis and carcinogenesis via crosstalk signaling with peroxisome proliferator-activated receptors

J. Mol. Endocrinol., 44 (3) (2010), pp. 143-154 View PDF

CrossRefView Record in ScopusGoogle Scholar[219]

G.J. Grover, K. Mellstrom, J. Malm

Therapeutic potential for thyroid hormone receptor-beta selective agonists for treating obesity, hyperlipidemia and diabetes

Curr. Vasc. Pharmacol., 5 (2) (2007), pp. 141-154 View PDF

CrossRefView Record in ScopusGoogle Scholar[220]

G. Bryzgalova, S. Effendic, A. Khan, S. Rehnmark, P. Barbounis, J. Boulet, G. Dong, R. Singh, S. Shapses, J. Malm, P. Webb, J.D. Baxter, G.J. Grover

Anti-obesity, anti-diabetic, and lipid lowering effects of the thyroid receptor beta subtype selective agonist KB-141

J. Steroid. Biochem. Mol. Biol., 111 (3–5) (2008), pp. 262-267

ArticleDownload PDFView Record in ScopusGoogle Scholar[221]

J. Dale, J. Daykin, R. Holder, M.C. Sheppard, J.A. Franklyn

Weight gain following treatment of hyperthyroidism

Clin. Endocrinol., 55 (2) (2001), pp. 233-239

View Record in ScopusGoogle Scholar[222]

L. Lonn, K. Stenlof, M. Ottosson, A.K. Lindroos, E. Nystrom, L. Sjostrom

Body weight and body composition changes after treatment of hyperthyroidism

J. Clin. Endocrinol. Metabol., 83 (12) (1998), pp. 4269-4273

View Record in ScopusGoogle Scholar[223]U. Kolyvanos Naumann, J. Furer, L. Kaser, W. Vetter, [Hypothyroidism. Main symptoms: fatigue, weight gain, depression, myalgia, edema], Praxis (Bern 1994) 96(38) (2007) 1411-7.

Google Scholar[224]

P. Bratusch-Marrain, P. Schmid, W. Waldhausl, W. Schlick

Specific weight loss in hyperthyroidism

Horm. Metab. Res., 10 (5) (1978), pp. 412-415 View PDF

CrossRefView Record in ScopusGoogle Scholar[225]

E. Valassi, M. Scacchi, F. Cavagnini

Neuroendocrine control of food intake

Nutr. Metab. Cardiovasc. Dis., 18 (2) (2008), pp. 158-168

ArticleDownload PDFView Record in ScopusGoogle Scholar[226]

J.W. Sohn

Network of Hypothalamic Neurons that Control Appetite

BMB reports (2015)

Google Scholar[227]

M.A. Rossi, G.D. Stuber

Overlapping brain circuits for homeostatic and hedonic feeding

Cell Metab., 27 (1) (2018), pp. 42-56

ArticleDownload PDFView Record in ScopusGoogle Scholar[228]

M. Lutter, E.J. Nestler

Homeostatic and hedonic signals interact in the regulation of food intake

J. Nutrit., 139 (3) (2009), pp. 629-632 View PDF

CrossRefView Record in ScopusGoogle Scholar[229]

P. Matafome, R. Seiça

The role of brain in energy balance

Adv Neurobiol, 19 (2017), pp. 33-48 View PDF

CrossRefView Record in ScopusGoogle Scholar[230]

L.K. Heisler, D.D. Lam

An appetite for life: brain regulation of hunger and satiety

Curr. Opin. Pharmacol., 37 (2017), pp. 100-106

ArticleDownload PDFView Record in ScopusGoogle Scholar[231]

C. Koliaki, S. Liatis, M. Dalamaga, A. Kokkinos

The implication of gut hormones in the regulation of energy homeostasis and their role in the pathophysiology of obesity

Curr. Obes. Rep., 9 (3) (2020), pp. 255-271 View PDF

CrossRefView Record in ScopusGoogle Scholar[232]

G.J. Morton, T.H. Meek, M.W. Schwartz

Neurobiology of food intake in health and disease

Nat. Rev. Neurosci., 15 (6) (2014), pp. 367-378 View PDF

CrossRefView Record in ScopusGoogle Scholar[233]

A. Kleinridders, H.A. Ferris, W. Cai, C.R. Kahn

Insulin action in brain regulates systemic metabolism and brain function

Diabetes, 63 (7) (2014), pp. 2232-2243 View PDF

CrossRefView Record in ScopusGoogle Scholar[234]

T.L. Stincic, O.K. Rønnekleiv, M.J. Kelly

Diverse actions of estradiol on anorexigenic and orexigenic hypothalamic arcuate neurons

Horm. Behav., 104 (2018), pp. 146-155

ArticleDownload PDFView Record in ScopusGoogle Scholar[235]

D. Zanchi, A. Depoorter, L. Egloff, S. Haller, L. Mählmann, U.E. Lang, J. Drewe, C. Beglinger, A. Schmidt, S. Borgwardt

The impact of gut hormones on the neural circuit of appetite and satiety: a systematic review

Neurosci. Biobehav. Rev., 80 (2017), pp. 457-475

ArticleDownload PDFView Record in ScopusGoogle Scholar[236]

M.C. Makris, A. Alexandrou, E.G. Papatsoutsos, G. Malietzis, D.I. Tsilimigras, A.D. Guerron, D. Moris

Ghrelin and obesity: identifying gaps and dispelling myths

A Reappraisal, In Vivo, 31 (6) (2017), pp. 1047-1050

View Record in ScopusGoogle Scholar[237]

R.M. Kessler, P.H. Hutson, B.K. Herman, M.N. Potenza

Neuroscience and biobehavioral reviews the neurobiological basis of binge-eating disorder

Neurosci. Biobehav. Rev., 63 (2016), pp. 223-238

ArticleDownload PDFView Record in ScopusGoogle Scholar[238]

J.H. Baik

Dopamine signaling in reward-related behaviors

Front Neural Circuits, 7 (2013), p. 152

View Record in ScopusGoogle Scholar[239]

J.H. Baik

Dopaminergic control of the feeding circuit

Endocrinol. Metab. (Seoul), 36 (2) (2021), pp. 229-239 View PDF

CrossRefView Record in ScopusGoogle Scholar[240]

D.A. Wiss, K. Criscitelli, M. Gold, N. Avena

Preclinical evidence for the addiction potential of highly palatable foods: current developments related to maternal influence

Appetite, 115 (2017), pp. 19-27

ArticleDownload PDFView Record in ScopusGoogle Scholar[241]

P. Charbogne, O. Gardon, E. Martín-García, H.L. Keyworth, A. Matsui, A.E. Mechling, T. Bienert, M.T. Nasseef, A. Robé, L. Moquin, E. Darcq, S. Ben Hamida, P. Robledo, A. Matifas, K. Befort, C. Gavériaux-Ruff, L.A. Harsan, D. von Elverfeldt, J. Hennig, A. Gratton, I. Kitchen, A. Bailey, V.A. Alvarez, R. Maldonado, B.L. Kieffer

Mu opioid receptors in gamma-aminobutyric acidergic forebrain neurons moderate motivation for heroin and palatable food

Biol. Psychiatry, 81 (9) (2017), pp. 778-788

ArticleDownload PDFView Record in ScopusGoogle Scholar[242]

M. Rosenbaum, E.M. Murphy, S.B. Heymsfield, D.E. Matthews, R.L. Leibel

Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones

J. Clin. Endocrinol. Metabol., 87 (5) (2002), pp. 2391-2394 View PDF

CrossRefView Record in ScopusGoogle Scholar[243]

Y.H. Yu, J.R. Vasselli, Y. Zhang, J.I. Mechanick, J. Korner, R. Peterli

Metabolic vs. hedonic obesity: a conceptual distinction and its clinical implications

Obes. Rev., 16 (3) (2015), pp. 234-247 View PDF

CrossRefGoogle Scholar[244]

Y.H. Yu

Making sense of metabolic obesity and hedonic obesity

J. Diabetes, 9 (7) (2017), pp. 656-666 View PDF

CrossRefView Record in ScopusGoogle Scholar[245]

R.H. Lustig, S. Sen, J.E. Soberman, P.A. Velasquez-Mieyer

Obesity, leptin resistance, and the effects of insulin reduction

Int. J. Obesity Related Metabol. Disorders: J. Int. Assoc. Study Obesity, 28 (10) (2004), pp. 1344-1348 View PDF

CrossRefView Record in ScopusGoogle Scholar[246]

I.S. Farooqi, E. Bullmore, J. Keogh, J. Gillard, S. O’Rahilly, P.C. Fletcher

Leptin regulates striatal regions and human eating behavior

Science, 317 (5843) (2007), p. 1355 View PDF

CrossRefGoogle Scholar[247]

H. Münzberg, M.G. Myers Jr.

Molecular and anatomical determinants of central leptin resistance

Nat. Neurosci., 8 (5) (2005), pp. 566-570 View PDF

CrossRefView Record in ScopusGoogle Scholar[248]

D.P. Figlewicz, S.B. Evans, J. Murphy, M. Hoen, D.G. Baskin

Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat

Brain Res., 964 (1) (2003), pp. 107-115

ArticleDownload PDFView Record in ScopusGoogle Scholar[249]

J.W. Hill, K.W. Williams, C. Ye, J. Luo, N. Balthasar, R. Coppari, M.A. Cowley, L.C. Cantley, B.B. Lowell, J.K. Elmquist

Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice

J. Clin. Invest., 118 (5) (2008), pp. 1796-1805

View Record in ScopusGoogle Scholar[250]

X. Lin, A. Taguchi, S. Park, J.A. Kushner, F. Li, Y. Li, M.F. White

Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and diabetes

J. Clin. Invest., 114 (7) (2004), pp. 908-916

View Record in ScopusGoogle Scholar[251]

J.M. Zabolotny, K.K. Bence-Hanulec, A. Stricker-Krongrad, F. Haj, Y. Wang, Y. Minokoshi, Y.B. Kim, J.K. Elmquist, L.A. Tartaglia, B.B. Kahn, B.G. Neel

PTP1B regulates leptin signal transduction in vivo

Dev. Cell, 2 (4) (2002), pp. 489-495

ArticleDownload PDFView Record in ScopusGoogle Scholar[252]

R.H. Lustig

Childhood obesity: behavioral aberration or biochemical drive? Reinterpreting the first law of thermodynamics

Nat. Clin. Pract. Endocrinol. Metab., 2 (8) (2006), pp. 447-458 View PDF

CrossRefView Record in ScopusGoogle Scholar[253]

M.L. Mietus-Snyder, R.H. Lustig

Childhood obesity: adrift in the “limbic triangle”

Annu. Rev. Med., 59 (2008), pp. 147-162 View PDF

CrossRefView Record in ScopusGoogle Scholar[254]

C.M. Aguilera, J. Olza, A. Gil

Genetic susceptibility to obesity and metabolic syndrome in childhood

Nutr. Hosp., 28 (Suppl 5) (2013), pp. 44-55

View Record in ScopusGoogle Scholar[255]

A.J. Lusis, A.D. Attie, K. Reue

Metabolic syndrome: from epidemiology to systems biology

Nat. Rev. Genet., 9 (11) (2008), pp. 819-830 View PDF

CrossRefView Record in ScopusGoogle Scholar[256]

D.S. Ludwig, L.J. Aronne, A. Astrup, R. de Cabo, L.C. Cantley, M.I. Friedman, S.B. Heymsfield, J.D. Johnson, J.C. King, R.M. Krauss, D.E. Lieberman, G. Taubes, J.S. Volek, E.C. Westman, W.C. Willett, W.S. Yancy, C.B. Ebbeling

The carbohydrate-insulin model: a physiological perspective on the obesity pandemic

Am. J. Clin. Nutr. (2021)

Google Scholar[257]K.L. Stanhope, M.I. Goran, A. Bosy-Westphal, e. al., Pathways and mechanisms linking dietary components to cardiometabolic disease: thinking beyond calories, Obes. Rev. 19(9) (2018) 1205-1295.

Google Scholar[258]

M.O. Weickert, A.F.H. Pfeiffer

Metabolic effects of dietary fiber consumption and prevention of diabetes

J. Nutr., 138 (2008), pp. 439-442 View PDF

CrossRefGoogle Scholar[259]M.S. Desai, A.M. Seekatz, N.M. Koropatkin, e. al., A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility, Cell 167(5) (2016) 1339–1353.e21.

Google Scholar[260]

R. Ferrarese, E.R. Ceresola, A. Preti, F. Canducci

Probiotics, prebiotics and synbiotics for weight loss and metabolic syndrome in the microbiome era

Eur. Rev. Med. Pharmacol. Sci., 22 (21) (2018), pp. 7588-7605

View Record in ScopusGoogle Scholar[261]

C.S. Johnston, C.S. Day, P.D. Swan

Postprandial thermogenesis is increased 100% on a high-protein, low-fat diet versus a high-carbohydrate, low-fat diet in healthy, young women

J. Am. Coll. Nutr., 21 (2002), pp. 55-61 View PDF

CrossRefView Record in ScopusGoogle Scholar[262]

B.V. Howard, J.E. Manson, M.L. Stefanick, S.A. Beresford, G. Frank, B. Jones, R.J. Rodabough, L. Snetselaar, C. Thomson, L. Tinker, M. Vitolins, R. Prentice

Low-fat dietary pattern and weight change over 7 years: the Women’s Health Initiative Dietary Modification Trial

JAMA, 295 (1) (2006), pp. 39-49 View PDF

CrossRefView Record in ScopusGoogle Scholar[263]

B.V. Howard, L. Van Horn, J. Hsia, J.E. Manson, M.L. Stefanick, S. Wassertheil-Smoller, L.H. Kuller, A.Z. LaCroix, R.D. Langer, N.L. Lasser, C.E. Lewis, M.C. Limacher, K.L. Margolis, W.J. Mysiw, J.K. Ockene, L.M. Parker, M.G. Perri, L. Phillips, R.L. Prentice, J. Robbins, J.E. Rossouw, G.E. Sarto, I.J. Schatz, L.G. Snetselaar, V.J. Stevens, L.F. Tinker, M. Trevisan, M.Z. Vitolins, G.L. Anderson, A.R. Assaf, T. Bassford, S.A. Beresford, H.R. Black, R.L. Brunner, R.G. Brzyski, B. Caan, R.T. Chlebowski, M. Gass, I. Granek, P. Greenland, J. Hays, D. Heber, G. Heiss, S.L. Hendrix, F.A. Hubbell, K.C. Johnson, J.M. Kotchen

Low-fat dietary pattern and risk of cardiovascular disease: the Women’s Health Initiative Randomized Controlled Dietary Modification Trial

JAMA, 295 (6) (2006), pp. 655-666 View PDF

CrossRefView Record in ScopusGoogle Scholar[264]C.E. Ramsden, D. Zamora, S. Majchrzak-Hong, e. al., Re-evaluation of the traditional diet-heart hypothesis: analysis of recovered data from Minnesota Coronary Experiment (1968-73), BMJ (Clinical research ed.) 353 (2016) i1246.

Google Scholar[265]I.D. Frantz, E.A. Dawson, P.L. Ashman, e. al., Test of effect of lipid lowering by diet on cardiovascular risk. The Minnesota Coronary Survey. , Arteriosclerosis. 9 (1989) 129-135.

Google Scholar[266]

M.I. Goran, K. Dumke, S.G. Bouret, B. Kayser, R.W. Walker, B. Blumberg

The obesogenic effect of high fructose exposure during early development. Nature reviews

Endocrinology, 9 (8) (2013), pp. 494-500 View PDF

CrossRefView Record in ScopusGoogle Scholar[267]T. Temelkova-Kurktschiev, G. Siegert, S. Bergmann, e. al., Subclinical inflammation is strongly related to insulin resistance but not to impaired insulin secretion in a high risk population for diabetes, Metabolism 51(6) (2002) 743–749.

Google Scholar[268]F. de Vegt, J.M. Dekker, H.G. Ruhé, e. al., Hyperglycaemia is associated with all-cause and cardiovascular mortality in the Hoorn population: the Hoorn Study, Diabetologia 42(8) (1999) 926–931.

Google Scholar[269]

K. Foster-Powell, J. Brand-Miller

International tables of glycemic index

Am. J. Clin. Nutr., 62 (4) (1995), pp. 871S-890S View PDF

CrossRefGoogle Scholar[270]

M. Slabber, H.C. Barnard, J.M. Kuyl, A. Dannhauser, R. Schall

Effects of a low-insulin-response, energy-restricted diet on weight loss and plasma insulin concentrations in hyperinsulinemic obese females

Am. J. Clin. Nutr., 60 (1) (1994), pp. 48-53 View PDF

CrossRefView Record in ScopusGoogle Scholar[271]

D.S. Ludwig, F.B. Hu, L. Tappy, J. Brand-Miller

Dietary carbohydrates: role of quality and quantity in chronic disease

BMJ (Clinical research ed.), 361 (2018), p. k2340 View PDF

CrossRefView Record in ScopusGoogle Scholar[272]

H.S. Lee, J. Lee

Effects of combined exercise and low carbohydrate ketogenic diet interventions on waist circumference and triglycerides in overweight and obese individuals: a systematic review and meta-analysis

Int. J. Environ. Res. Public Health, 18 (2) (2021)

Google Scholar[273]

F. Magkos, M.F. Hjorth, A. Astrup

Diet and exercise in the prevention and treatment of type 2 diabetes mellitus

Nat. Rev. Endocrinol., 16 (10) (2020), pp. 545-555 View PDF

CrossRefView Record in ScopusGoogle Scholar[274]

H. Li, Y. Dun, W. Zhang, B. You, Y. Liu, S. Fu, L. Qiu, J. Cheng, J.W. Ripley-Gonzalez, S. Liu

Exercise improves lipid droplet metabolism disorder through activation of AMPK-mediated lipophagy in NAFLD

Life Sci., 273 (2021), Article 119314

ArticleDownload PDFView Record in ScopusGoogle Scholar[275]

A. Thorp, J.G. Stine

Exercise as medicine: the impact of exercise training on nonalcoholic fatty liver disease

Curr. Hepatol. Rep., 19 (4) (2020), pp. 402-411 View PDF

CrossRefView Record in ScopusGoogle Scholar[276]

J.Y. Kim, J.Y. Jeon

Role of exercise on insulin sensitivity and beta-cell function: is exercise sufficient for the prevention of youth-onset type 2 diabetes?

Ann. Pediatric Endocrinol. Metabol., 25 (4) (2020), pp. 208-216

View Record in ScopusGoogle Scholar[277]

T.M. Barber, I. Kyrou, H.S. Randeva, M.O. Weickert

Mechanisms of insulin resistance at the crossroad of obesity with associated metabolic abnormalities and cognitive dysfunction

Int. J. Mol. Sci., 22 (2) (2021)

Google Scholar[278]

M. Imierska, A. Kurianiuk, A. Błachnio-Zabielska

The influence of physical activity on the bioactive lipids metabolism in obesity-induced muscle insulin resistance

Biomolecules, 10 (12) (2020)

Google Scholar[279]

Y. Sun, S. Ding

ER-mitochondria contacts and insulin resistance modulation through exercise intervention

Int. J. Mol. Sci., 21 (24) (2020)

Google Scholar[280]

A.M. Gonzalez-Gil, L. Elizondo-Montemayor

The role of exercise in the interplay between myokines, hepatokines, osteokines, adipokines, and modulation of inflammation for energy substrate redistribution and fat mass loss: a review

Nutrients, 12 (6) (2020)

Google Scholar[281]

J.C. Rosa-Neto, L.S. Silveira

Endurance exercise mitigates immunometabolic adipose tissue disturbances in cancer and obesity

Int. J. Mol. Sci., 21 (24) (2020)

Google Scholar[282]

N. Soltani, S.M. Marandi, M. Kazemi, N. Esmaeil

The exercise training modulatory effects on the obesity-induced immunometabolic dysfunctions

Diabetes Metabol. Syndrome Obesity: Targets Therapy, 13 (2020), pp. 785-810 View PDF

CrossRefView Record in ScopusGoogle Scholar[283]

C. Laurens, A. Bergouignan, C. Moro

Exercise-released myokines in the control of energy metabolism

Front. Physiol., 11 (2020), p. 91

View Record in ScopusGoogle Scholar[284]

Z. Fan, M. Xu

Exercise and Organ cross talk

Adv, Exp, Med, Biol,, 1228 (2020), pp. 63-76 View PDF

CrossRefView Record in ScopusGoogle Scholar[285]

E. Trovato, V. Di Felice, R. Barone

Extracellular vesicles: delivery vehicles of myokines

Front. Physiol., 10 (2019), p. 522

View Record in ScopusGoogle Scholar[286]

I.J. Vechetti, T. Valentino, C.B. Mobley, J.J. McCarthy

The role of extracellular vesicles in skeletal muscle and systematic adaptation to exercise

J. Physiol., 599 (3) (2021), pp. 845-861 View PDF

CrossRefView Record in ScopusGoogle Scholar[287]A.C. Improta Caria, C.K.V. Nonaka, C.S. Pereira, M.B.P. Soares, S.G. Macambira, B.S.F. Souza, Exercise Training-Induced Changes in MicroRNAs: Beneficial Regulatory Effects in Hypertension, Type 2 Diabetes, and Obesity, Int. J. Mol. Sci. 19(11) (2018).

Google Scholar[288]

N. Ehtesham, S. Shahrbanian, M. Valadiathar, S.J. Mowla

Modulations of obesity-related microRNAs after exercise intervention: a systematic review and bioinformatics analysis

Mol. Biol. Rep. (2021)

Google Scholar[289]

J.E. Harris, L.A. Baer, K.I. Stanford

Maternal exercise improves the metabolic health of adult offspring

Trends Endocrinol. Metabol.: TEM, 29 (3) (2018), pp. 164-177

ArticleDownload PDFView Record in ScopusGoogle Scholar[290]

J. Zheng, L.Y. Zhou, X.H. Xiao

Maternal exercise and its beneficial effects on glucose metabolism in offspring

Chin Med. J. (Engl), 133 (7) (2020), pp. 863-867 View PDF

CrossRefView Record in ScopusGoogle Scholar[291]

S.F. McCarthy, H. Islam, T.J. Hazell

The emerging role of lactate as a mediator of exercise-induced appetite suppression

Am. J. Physiol. Endocrinol. Metabol., 319 (4) (2020), pp. E814-E819 View PDF

CrossRefView Record in ScopusGoogle Scholar[292]

R.L. Atkinson

Viruses as an etiology of obesity

Mayo Clin Proc, 82 (10) (2007), pp. 1192-1198

ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[293]

M.J. Lyons, I.M. Faust, R.B. Hemmes, D.R. Buskirk, J. Hirsch, J.B. Zabriskie

A virally induced obesity syndrome in mice

Science, 216 (4541) (1982), pp. 82-85 View PDF

CrossRefView Record in ScopusGoogle Scholar[294]

J.K. Carter, C.L. Ow, R.E. Smith

Rous-associated virus type 7 induces a syndrome in chickens characterized by stunting and obesity

Infect. Immun., 39 (1) (1983), pp. 410-422 View PDF

CrossRefView Record in ScopusGoogle Scholar[295]R.L. Atkinson, N.V. Dhurandhar, D.B. Allison, R.L. Bowen, B.A. Israel, J.B. Albu, A.S. Augustus, Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids, International journal of obesity (2005) 29(3) (2005) 281-6.

Google Scholar[296]

Q. Shang, H. Wang, Y. Song, L. Wei, C. Lavebratt, F. Zhang, H. Gu

Serological data analyses show that adenovirus 36 infection is associated with obesity: a meta-analysis involving 5739 subjects

Obesity (Silver Spring), 22 (3) (2014), pp. 895-900 View PDF

CrossRefView Record in ScopusGoogle Scholar[297]

E. Ponterio, L. Gnessi

Adenovirus 36 and obesity: an overview

Viruses, 7 (7) (2015), pp. 3719-3740 View PDF

CrossRefView Record in ScopusGoogle Scholar[298]S.D. Vangipuram, M. Yu, J. Tian, K.L. Stanhope, M. Pasarica, P.J. Havel, A.R. Heydari, N.V. Dhurandhar, Adipogenic human adenovirus-36 reduces leptin expression and secretion and increases glucose uptake by fat cells, International journal of obesity (2005) 31(1) (2007) 87-96.

Google Scholar[299]J. Sapunar, L. Fonseca, V. Molina, E. Ortiz, M.I. Barra, C. Reimer, M. Charles, C. Schneider, M. Ortiz, R. Brito, V. Manríquez, M. Pavez, A. Cerda, Adenovirus 36 seropositivity is related to obesity risk, glycemic control, and leptin levels in Chilean subjects, International journal of obesity (2005) 44(1) (2020) 159-166.

Google Scholar[300]

D.J. Fazakerley, J.R. Krycer, A.L. Kearney, S.L. Hocking, D.E. James

Muscle and adipose tissue insulin resistance: malady without mechanism?

J. Lipid Res., 60 (10) (2019), pp. 1720-1732

ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[301]

D. Samocha-Bonet, V.D. Dixit, C.R. Kahn, R.L. Leibel, X. Lin, M. Nieuwdorp, K.H. Pietiläinen, R. Rabasa-Lhoret, M. Roden, P.E. Scherer, S. Klein, E. Ravussin

Metabolically healthy and unhealthy obese–the 2013 Stock Conference report

Obes Rev., 15 (9) (2014), pp. 697-708 View PDF

CrossRefView Record in ScopusGoogle Scholar[302]

T. Kitamura, C.R. Kahn, D. Accili

Insulin receptor knockout mice

Annu. Rev. Physiol., 65 (2003), pp. 313-332

View Record in ScopusGoogle Scholar[303]

M. Matsumoto, S. Han, T. Kitamura, D. Accili

Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism

J. Clin. Invest., 116 (9) (2006), pp. 2464-2472

View Record in ScopusGoogle Scholar[304]

M. Naïmi, N. Gautier, C. Chaussade, A.M. Valverde, D. Accili, E. Van Obberghen

Nuclear forkhead box O1 controls and integrates key signaling pathways in hepatocytes

Endocrinology, 148 (5) (2007), pp. 2424-2434 View PDF

CrossRefView Record in ScopusGoogle Scholar[305]

G.F. Lewis, K.D. Uffelman, L.W. Szeto, G. Steiner

Effects of acute hyperinsulinemia on VLDL triglyceride and VLDL apoB production in normal weight and obese individuals

Diabetes, 42 (6) (1993), pp. 833-842 View PDF

CrossRefView Record in ScopusGoogle Scholar[306]

S. Fu, S.M. Watkins, G.S. Hotamisligil

The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling

Cell Metab, 15 (5) (2012), pp. 623-634

ArticleDownload PDFView Record in ScopusGoogle Scholar[307]

A.L. Birkenfeld, G.I. Shulman

Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes

Hepatology, 59 (2) (2014), pp. 713-723 View PDF

CrossRefView Record in ScopusGoogle Scholar[308]

J. Sripetchwandee, N. Chattipakorn, S.C. Chattipakorn

Links between obesity-induced brain insulin resistance, brain mitochondrial dysfunction, and dementia

Front. Endocrinol. (Lausanne), 9 (2018), p. 496

View Record in ScopusGoogle Scholar[309]

M. Valdearcos, J.D. Douglass, M.M. Robblee, M.D. Dorfman, D.R. Stifler, M.L. Bennett, I. Gerritse, R. Fasnacht, B.A. Barres, J.P. Thaler, S.K. Koliwad

Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility

Cell Metab., 26 (1) (2017), pp. 185-197.e3

ArticleDownload PDFView Record in ScopusGoogle Scholar[310]

G.F. Lewis, A. Carpentier, K. Adeli, A. Giacca

Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes

Endocr. Rev., 23 (2) (2002), pp. 201-229

View Record in ScopusGoogle Scholar[311]S. Lobo, D.A. Bernlohr, Fatty acid transport in adipocytes and the development of insulin resistance, Novartis Found Symp 286 (2007) 113-21; discussion 121-6, 162-3, 196-203.

Google Scholar[312]

B.R. Thompson, S. Lobo, D.A. Bernlohr

Fatty acid flux in adipocytes: the in’s and out’s of fat cell lipid trafficking

Mol. Cell Endocrinol., 318 (1–2) (2010), pp. 24-33

ArticleDownload PDFView Record in ScopusGoogle Scholar[313]

P. Zhao, K.I. Wong, X. Sun, S.M. Reilly, M. Uhm, Z. Liao, Y. Skorobogatko, A.R. Saltiel

TBK1 at the crossroads of inflammation and energy homeostasis in adipose tissue

Cell, 172 (4) (2018), pp. 731-743.e12

ArticleDownload PDFView Record in ScopusGoogle Scholar[314]

A.A. Bremer, S. Devaraj, A. Afify, I. Jialal

Adipose tissue dysregulation in patients with metabolic syndrome

J. Clin. Endocrinol. Metabol., 96 (11) (2011), pp. E1782-E1788 View PDF

CrossRefView Record in ScopusGoogle Scholar[315]

S.E. Shoelson, J. Lee, A.B. Goldfine

Inflammation and insulin resistance

J. Clin. Invest., 116 (7) (2006), pp. 1793-1801 View PDF

CrossRefView Record in ScopusGoogle Scholar[316]

H. Xu, G.T. Barnes, Q. Yang, G. Tan, D. Yang, C.J. Chou, J. Sole, A. Nichols, J.S. Ross, L.A. Tartaglia, H. Chen

Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance

J. Clin. Invest., 112 (12) (2003), pp. 1821-1830

View Record in ScopusGoogle Scholar[317]

A.R. Saltiel, J.M. Olefsky

Inflammatory mechanisms linking obesity and metabolic disease

J. Clin. Invest., 127 (1) (2017), pp. 1-4

View Record in ScopusGoogle Scholar[318]

G. Cildir, S.C. Akincilar, V. Tergaonkar

Chronic adipose tissue inflammation: all immune cells on the stage

Trends Mol. Med., 19 (8) (2013), pp. 487-500

ArticleDownload PDFView Record in ScopusGoogle Scholar[319]

R. Kolb, F.S. Sutterwala, W. Zhang

Obesity and cancer: inflammation bridges the two

Curr. Opin. Pharmacol., 29 (2016), pp. 77-89

ArticleDownload PDFView Record in ScopusGoogle Scholar[320]

C.M. Steppan, E.J. Brown, C.M. Wright, S. Bhat, R.R. Banerjee, C.Y. Dai, G.H. Enders, D.G. Silberg, X. Wen, G.D. Wu, M.A. Lazar

A family of tissue-specific resistin-like molecules

PNAS, 98 (2) (2001), pp. 502-506

View Record in ScopusGoogle Scholar[321]

A. Bansal, J. Henao-Mejia, R.A. Simmons

Immune system: an emerging player in mediating effects of endocrine disruptors on metabolic health

Endocrinology, 159 (1) (2018), pp. 32-45 View PDF

CrossRefView Record in ScopusGoogle Scholar[322]

C. Crewe, Y.A. An, P.E. Scherer

The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis

J Clin Invest, 127 (1) (2017), pp. 74-82

View Record in ScopusGoogle Scholar[323]

S.M. Reilly, A.R. Saltiel

Adapting to obesity with adipose tissue inflammation

Nat. Rev. Endocrinol., 13 (11) (2017), pp. 633-643 View PDF

CrossRefView Record in ScopusGoogle Scholar[324]

L. Russo, C.N. Lumeng

Properties and functions of adipose tissue macrophages in obesity

Immunology, 155 (4) (2018), pp. 407-417 View PDF

CrossRefView Record in ScopusGoogle Scholar[325]

Y. Li, K. Yun, R. Mu

A review on the biology and properties of adipose tissue macrophages involved in adipose tissue physiological and pathophysiological processes

Lipids Health Dis., 19 (1) (2020), p. 164

ArticleDownload PDFGoogle Scholar[326]

O. Osborn, J.M. Olefsky

The cellular and signaling networks linking the immune system and metabolism in disease

Nat. Med., 18 (3) (2012), pp. 363-374, 10.1038/nm.2627 View PDF

View Record in ScopusGoogle Scholar[327]

N. Ouchi, J.L. Parker, J.J. Lugus, K. Walsh

Adipokines in inflammation and metabolic disease

Nat. Rev. Immunol., 11 (2) (2011), pp. 85-97, 10.1038/nri2921

Epub 2011 Jan 21 View PDF

View Record in ScopusGoogle Scholar[328]

H. Sell, C. Habich, J. Eckel

Adaptive immunity in obesity and insulin resistance

Nat. Rev. Endocrinol., 8 (12) (2012), pp. 709-716, 10.1038/nrendo.2012.114

Epub 2012 Jul 31 View PDF

View Record in ScopusGoogle Scholar[329]

J.R. Brestoff, D. Artis

Immune regulation of metabolic homeostasis in health and disease

Cell, 161 (1) (2015), pp. 146-160, 10.1016/j.cell.2015.02.022

ArticleDownload PDFView Record in ScopusGoogle Scholar[330]

M. Itoh, T. Suganami, R. Hachiya, Y. Ogawa

Adipose tissue remodeling as homeostatic inflammation

Int. J. Inflam., 2011 (2011), Article 720926

View Record in ScopusGoogle Scholar[331]

J.O. Hill

Understanding and addressing the epidemic of obesity: an energy balance perspective

Endocr. Rev., 27 (7) (2006), pp. 750-761 View PDF

CrossRefView Record in ScopusGoogle Scholar[332]

R. Sarwar, N. Pierce, S. Koppe

Obesity and nonalcoholic fatty liver disease: current perspectives

Diabet. Metabol. Syndrome Obesity: Targets Therapy, 11 (2018), pp. 533-542 View PDF

CrossRefView Record in ScopusGoogle Scholar[333]

A. Hruby, F.B. Hu

The epidemiology of obesity: a big picture

PharmacoEconomics, 33 (7) (2015), pp. 673-689 View PDF

CrossRefView Record in ScopusGoogle Scholar[334]

J. Durack, S.V. Lynch

The gut microbiome: relationships with disease and opportunities for therapy

J. Exp. Med., 216 (1) (2019), pp. 20-40 View PDF

CrossRefView Record in ScopusGoogle Scholar[335]

A.B. Shreiner, J.Y. Kao, V.B. Young

The gut microbiome in health and in disease

Curr. Opin. Gastroenterol., 31 (1) (2015), pp. 69-75

View Record in ScopusGoogle Scholar[336]

P.D. Cani

Human gut microbiome: hopes, threats and promises

Gut, 67 (9) (2018), pp. 1716-1725 View PDF

CrossRefView Record in ScopusGoogle Scholar[337]

M. Li, B. van Esch, G.T.M. Wagenaar, J. Garssen, G. Folkerts, P.A.J. Henricks

Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells

Eur. J. Pharmacol., 831 (2018), pp. 52-59

ArticleDownload PDFCrossRefGoogle Scholar[338]

O. Castaner, A. Goday, Y.M. Park, S.H. Lee, F. Magkos, S.T.E. Shiow, H. Schroder

The gut microbiome profile in obesity: a systematic review

Int. J. Endocrinol., 2018 (2018), p. 4095789

Google Scholar[339]

L. Abenavoli, E. Scarpellini, C. Colica, L. Boccuto, B. Salehi, J. Sharifi-Rad, V. Aiello, B. Romano, A. De Lorenzo, A.A. Izzo, R. Capasso

Gut microbiota and obesity: a role for probiotics

Nutrients, 11 (11) (2019), p. 2690 View PDF

CrossRefView Record in ScopusGoogle Scholar[340]

J. Qin, R. Li, J. Raes, M. Arumugam, K.S. Burgdorf, C. Manichanh, T. Nielsen, N. Pons, F. Levenez, T. Yamada, D.R. Mende, J. Li, J. Xu, S. Li, D. Li, J. Cao, B. Wang, H. Liang, H. Zheng, Y. Xie, J. Tap, P. Lepage, M. Bertalan, J.M. Batto, T. Hansen, D. Le Paslier, A. Linneberg, H.B. Nielsen, E. Pelletier, P. Renault, T. Sicheritz-Ponten, K. Turner, H. Zhu, C. Yu, S. Li, M. Jian, Y. Zhou, Y. Li, X. Zhang, S. Li, N. Qin, H. Yang, J. Wang, S. Brunak, J. Dore, F. Guarner, K. Kristiansen, O. Pedersen, J. Parkhill, J. Weissenbach, H.I.T.C. Meta, P. Bork, S.D. Ehrlich, J. Wang

A human gut microbial gene catalogue established by metagenomic sequencing

Nature, 464 (7285) (2010), pp. 59-65 View PDF

CrossRefGoogle Scholar[341]

R.E. Ley, P.J. Turnbaugh, S. Klein, J.I. Gordon

Microbial ecology: human gut microbes associated with obesity

Nature, 444 (7122) (2006), pp. 1022-1023 View PDF

CrossRefGoogle Scholar[342]

R. Wang, R. Tang, B. Li, X. Ma, B. Schnabl, H. Tilg

Gut microbiome, liver immunology, and liver diseases

Cell Mol. Immunol., 18 (1) (2021), pp. 4-17 View PDF

CrossRefView Record in ScopusGoogle Scholar[343]

T. Aguilar, G.M. Nava, A.M. Olvera-Ramirez, D. Ronquillo, M. Camacho, G.A. Zavala, M.C. Caamano, K. Acevedo-Whitehouse, J.L. Rosado, O.P. Garcia

Gut bacterial families are associated with body composition and metabolic risk markers in school-aged children in rural Mexico

Childhood obesity (Print), 16 (5) (2020), pp. 358-366 View PDF

CrossRefView Record in ScopusGoogle Scholar[344]

A. Sekikawa, T. Kadowaki, J.D. Curb, R.W. Evans, H. Maegawa, R.D. Abbott, K. Sutton-Tyrrell, T. Okamura, C. Shin, D. Edmundowicz, A. Kadota, J. Choo, A. El-Saed, H. Ueshima, L.H. Kuller, E.j.s.

group, Circulating levels of 8 cytokines and marine n-3 fatty acids and indices of obesity in Japanese, white, and Japanese American middle-aged men

J. Interferon Cytokine Res., 30 (7) (2010), pp. 541-548 View PDF

CrossRefView Record in ScopusGoogle Scholar[345]

J. Henao-Mejia, E. Elinav, C. Jin, L. Hao, W.Z. Mehal, T. Strowig, C.A. Thaiss, A.L. Kau, S.C. Eisenbarth, M.J. Jurczak, J.P. Camporez, G.I. Shulman, J.I. Gordon, H.M. Hoffman, R.A. Flavell

Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity

Nature, 482 (7384) (2012), pp. 179-185 View PDF

CrossRefView Record in ScopusGoogle Scholar[346]

V.K. Ridaura, J.J. Faith, F.E. Rey, J. Cheng, A.E. Duncan, A.L. Kau, N.W. Griffin, V. Lombard, B. Henrissat, J.R. Bain, M.J. Muehlbauer, O. Ilkayeva, C.F. Semenkovich, K. Funai, D.K. Hayashi, B.J. Lyle, M.C. Martini, L.K. Ursell, J.C. Clemente, W. Van Treuren, W.A. Walters, R. Knight, C.B. Newgard, A.C. Heath, J.I. Gordon

Gut microbiota from twins discordant for obesity modulate metabolism in mice

Science, 341 (6150) (2013), p. 1241214

View Record in ScopusGoogle Scholar[347]

A. Agus, J. Planchais, H. Sokol

Gut microbiota regulation of tryptophan metabolism in health and disease

Cell Host. Microbe., 23 (6) (2018), pp. 716-724

ArticleDownload PDFView Record in ScopusGoogle Scholar[348]

L. Laurans, N. Venteclef, Y. Haddad, M. Chajadine, F. Alzaid, S. Metghalchi, B. Sovran, R.G.P. Denis, J. Dairou, M. Cardellini, J.M. Moreno-Navarrete, M. Straub, S. Jegou, C. McQuitty, T. Viel, B. Esposito, B. Tavitian, J. Callebert, S.H. Luquet, M. Federici, J.M. Fernandez-Real, R. Burcelin, J.M. Launay, A. Tedgui, Z. Mallat, H. Sokol, S. Taleb

Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health

Nat. Med., 24 (8) (2018), pp. 1113-1120 View PDF

CrossRefView Record in ScopusGoogle Scholar[349]

S. Sanna, N.R. van Zuydam, A. Mahajan, A. Kurilshikov, A. Vich Vila, U. Vosa, Z. Mujagic, A.A.M. Masclee, D. Jonkers, M. Oosting, L.A.B. Joosten, M.G. Netea, L. Franke, A. Zhernakova, J. Fu, C. Wijmenga, M.I. McCarthy

Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases

Nat Genet, 51 (4) (2019), pp. 600-605 View PDF

CrossRefView Record in ScopusGoogle Scholar[350]

H. Xiao, S. Kang

The Role of the Gut Microbiome in Energy Balance With a Focus on the Gut-Adipose Tissue Axis

Front Genet, 11 (2020), p. 297

View Record in ScopusGoogle Scholar[351]

H. Tilg, N. Zmora, T.E. Adolph, E. Elinav

The intestinal microbiota fuelling metabolic inflammation

Nat. Rev. Immunol., 20 (1) (2020), pp. 40-54 View PDF

CrossRefView Record in ScopusGoogle Scholar[352]

A.T. Virtue, S.J. McCright, J.M. Wright, M.T. Jimenez, W.K. Mowel, J.J. Kotzin, L. Joannas, M.G. Basavappa, S.P. Spencer, M.L. Clark, S.H. Eisennagel, A. Williams, M. Levy, S. Manne, S.E. Henrickson, E.J. Wherry, C.A. Thaiss, E. Elinav, J. Henao-Mejia

The gut microbiota regulates white adipose tissue inflammation and obesity via a family of microRNAs

Sci Transl Med, 11 (496) (2019)

Google Scholar[353]

J. Boursier, O. Mueller, M. Barret, M. Machado, L. Fizanne, F. Araujo-Perez, C.D. Guy, P.C. Seed, J.F. Rawls, L.A. David, G. Hunault, F. Oberti, P. Cales, A.M. Diehl

The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota

Hepatology, 63 (3) (2016), pp. 764-775 View PDF

CrossRefView Record in ScopusGoogle Scholar[354]

L. Fandriks

Roles of the gut in the metabolic syndrome: an overview

J. Int. Med., 281 (4) (2017), pp. 319-336 View PDF

CrossRefView Record in ScopusGoogle Scholar[355]

A. Kohsaka, J. Bass

A sense of time: how molecular clocks organize metabolism

Trends Endocrinol. Metabol.: TEM, 18 (1) (2007), pp. 4-11

ArticleDownload PDFView Record in ScopusGoogle Scholar[356]

J.J. Gooley

Circadian regulation of lipid metabolism

Proc. Nutr. Soc., 75 (4) (2016), pp. 440-450

View Record in ScopusGoogle Scholar[357]

A. Mayeuf-Louchart, M. Zecchin, B. Staels, H. Duez

Circadian control of metabolism and pathological consequences of clock perturbations

Biochimie, 143 (2017), pp. 42-50

ArticleDownload PDFView Record in ScopusGoogle Scholar[358]

Y. Serin, N. Acar Tek

Effect of Circadian Rhythm on Metabolic Processes and the Regulation of Energy Balance

Ann. Nutr. Metab., 74 (4) (2019), pp. 322-330 View PDF

CrossRefView Record in ScopusGoogle Scholar[359]

D. Guan, M.A. Lazar

Interconnections between circadian clocks and metabolism

J. Clin. Invest., 131 (15) (2021)

Google Scholar[360]

S.G. Parkar, A. Kalsbeek, J.F. Cheeseman

Potential role for the gut microbiota in modulating host circadian rhythms and metabolic health

Microorganisms, 7 (2) (2019)

Google Scholar[361]

A. Mukherji, S.M. Bailey, B. Staels, T.F. Baumert

The circadian clock and liver function in health and disease

J. Hepatol., 71 (1) (2019), pp. 200-211

ArticleDownload PDFView Record in ScopusGoogle Scholar[362]

X. Pan, S. Mota, B. Zhang

Circadian clock regulation on lipid metabolism and metabolic diseases

Adv. Exp. Med. Biol., 1276 (2020), pp. 53-66 View PDF

CrossRefView Record in ScopusGoogle Scholar[363]

A.R. Saran, S. Dave, A. Zarrinpar

Circadian rhythms in the pathogenesis and treatment of fatty liver disease

Gastroenterology, 158 (7) (2020), pp. 1948-1966.e1

ArticleDownload PDFView Record in ScopusGoogle Scholar[364]C. Andriessen, P. Schrauwen, J. Hoeks, The importance of 24-h metabolism in obesity-related metabolic disorders: opportunities for timed interventions, International journal of obesity (2005) 45(3) (2021) 479-490.

Google Scholar[365]

D.J. Barker

The fetal and infant origins of adult disease

BMJ (Clinical research ed.), 301 (6761) (1990), p. 1111 View PDF

CrossRefView Record in ScopusGoogle Scholar[366]

D.J. Barker

The origins of the developmental origins theory

J. Intern. Med, 261 (5) (2007), pp. 412-417 View PDF

CrossRefView Record in ScopusGoogle Scholar[367]

E. Oken, M.W. Gillman

Fetal origins of obesity

Obes. Res., 11 (4) (2003), pp. 496-506 View PDF

CrossRefView Record in ScopusGoogle Scholar[368]

P.D. Taylor, L. Poston

Developmental programming of obesity in mammals

Exp Physiol, 92 (2) (2007), pp. 287-298 View PDF

CrossRefView Record in ScopusGoogle Scholar[369]

C.N. Hales, D.J. Barker, P.M. Clark, L.J. Cox, C. Fall, C. Osmond, P.D. Winter

Fetal and infant growth and impaired glucose tolerance at age 64

BMJ (Clinical research ed.), 303 (6809) (1991), pp. 1019-1022 View PDF

CrossRefView Record in ScopusGoogle Scholar[370]

G.C. Curhan, W.C. Willett, E.B. Rimm, D. Spiegelman, A.L. Ascherio, M.J. Stampfer

Birth weight and adult hypertension, diabetes mellitus, and obesity in US men

Circulation, 94 (12) (1996), pp. 3246-3250

View Record in ScopusGoogle Scholar[371]

G.C. Curhan, G.M. Chertow, W.C. Willett, D. Spiegelman, G.A. Colditz, J.E. Manson, F.E. Speizer, M.J. Stampfer

Birth weight and adult hypertension and obesity in women

Circulation, 94 (6) (1996), pp. 1310-1315

View Record in ScopusGoogle Scholar[372]

I. Rogers, E.-B.S. Group

The influence of birthweight and intrauterine environment on adiposity and fat distribution in later life

Int. J. Obesity Related Metabolic Disorders : J. Int. Assoc. Study of Obesity, 27 (7) (2003), pp. 755-777

Google Scholar[373]

K.K. Ong, M.L. Ahmed, P.M. Emmett, M.A. Preece, D.B. Dunger

Association between postnatal catch-up growth and obesity in childhood: prospective cohort study

BMJ (Clinical research ed.), 320 (2000)

Google Scholar[374]

L. Ibáñez, K. Ong, D.B. Dunger, F. de Zegher

Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational-age children

J. Clin. Endocrinol. Metabol., 91 (6) (2006), pp. 2153-2158 View PDF

CrossRefView Record in ScopusGoogle Scholar[375]

T.I. Halldorsson, D. Rytter, L.S. Haug, B.H. Bech, I. Danielsen, G. Becher, T.B. Henriksen, S.F. Olsen

Prenatal exposure to perfluorooctanoate and risk of overweight at 20 years of age: a prospective cohort study

Environ. Health Perspect. (2012)

Google Scholar[376]

J.M. Braun, A. Chen, M.E. Romano, A.M. Calafat, G.M. Webster, K. Yolton, B.P. Lanphear

Prenatal perfluoroalkyl substance exposure and child adiposity at 8 years of age: The HOME study

Obesity (Silver Spring), 24 (1) (2016), pp. 231-237 View PDF

CrossRefView Record in ScopusGoogle Scholar[377]

M. Vrijheid, S. Fossati, L. Maitre, S. Marquez, T. Roumeliotaki, L. Agier, S. Andrusaityte, S. Cadiou, M. Casas, M. de Castro, A. Dedele, D. Donaire-Gonzalez, R. Grazuleviciene, L.S. Haug, R. McEachan, H.M. Meltzer, E. Papadopouplou, O. Robinson, A.K. Sakhi, V. Siroux, J. Sunyer, P.E. Schwarze, I. Tamayo-Uria, J. Urquiza, M. Vafeiadi, A. Valentin, C. Warembourg, J. Wright, M.J. Nieuwenhuijsen, C. Thomsen, X. Basagana, R. Slama, L. Chatzi

Early-life environmental exposures and childhood obesity: an exposome-wide approach

Environ. Health Perspect., 128 (6) (2020), p. 67009

Google Scholar[378]E. Oken, E.B. Levitan, M.W. Gillman, Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis, International journal of obesity (2005) 32(2) (2008) 201-10.

Google Scholar[379]

C.M. Boney, A. Verma, R. Tucker, B.R. Vohr

Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus

Pediatrics, 115 (3) (2005), pp. e290-e296 View PDF

CrossRefView Record in ScopusGoogle Scholar[380]

T.J. Roseboom, J.H. van der Meulen, A.C. Ravelli, C. Osmond, D.J. Barker, O.P. Bleker

Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview

Mol Cell Endocrinol, 185 (1–2) (2001), pp. 93-98

ArticleDownload PDFView Record in ScopusGoogle Scholar[381]

C.S. Yajnik, H.G. Lubree, S.S. Rege, S.S. Naik, J.A. Deshpande, S.S. Deshpande, C.V. Joglekar, J.S. Yudkin

Adiposity and hyperinsulinemia in Indians are present at birth

J. Clin. Endocrinol. Metabol., 87 (12) (2002), pp. 5575-5580

View Record in ScopusGoogle Scholar[382]

N.J. Arends, V.H. Boonstra, H.J. Duivenvoorden, P.L. Hofman, W.S. Cutfield, A.C. Hokken-Koelega

Reduced insulin sensitivity and the presence of cardiovascular risk factors in short prepubertal children born small for gestational age (SGA)

Clin. Endocrinol., 62 (1) (2005), pp. 44-50 View PDF

CrossRefView Record in ScopusGoogle Scholar[383]

C.J. Petry, S.E. Ozanne, C.L. Wang, C.N. Hales

Effects of early protein restriction and adult obesity on rat pancreatic hormone content and glucose tolerance

Horm Metab Res, 32 (6) (2000), pp. 233-239 View PDF

CrossRefView Record in ScopusGoogle Scholar[384]

R.A. Simmons, L.J. Templeton, S.J. Gertz

Intrauterine growth retardation leads to the development of type 2 diabetes in the rat

Diabetes, 50 (10) (2001), pp. 2279-2286 View PDF

CrossRefView Record in ScopusGoogle Scholar[385]

S.G. Bouret, R.B. Simerly

Minireview: Leptin and development of hypothalamic feeding circuits

Endocrinology, 145 (2004), pp. 2621-2626

View Record in ScopusGoogle Scholar[386]

S. Pinto, A.G. Roseberry, H. Liu, S. Diano, M. Shanabrough, X. Cai, J.M. Friedman, T.L. Horvath

Rapid rewiring of arcuate nucleus feeding circuits by leptin

Science, 304 (5667) (2004), pp. 110-115

View Record in ScopusGoogle Scholar[387]

M.H. Vickers, P.D. Gluckman, A.H. Coveny, P.L. Hofman, W.S. Cutfield, A. Gertler, B.H. Breier, M. Harris

Neonatal leptin treatment reverses developmental programming

Endocrinology, 146 (10) (2005), pp. 4211-4216 View PDF

CrossRefView Record in ScopusGoogle Scholar[388]

A.P. Starling, J.T. Brinton, D.H. Glueck, A.L. Shapiro, C.S. Harrod, A.M. Lynch, A.M. Siega-Riz, D. Dabelea

Associations of maternal BMI and gestational weight gain with neonatal adiposity in the Healthy Start study

Am. J. Clin. Nutr., 101 (2) (2015), pp. 302-309 View PDF

CrossRefView Record in ScopusGoogle Scholar[389]

P.M. Catalano, N.M. Drago, S.B. Amini

Maternal carbohydrate metabolism and its relationship to fetal growth and body composition

Am. J. Obstet. Gynecol., 172 (5) (1995), pp. 1464-1470

ArticleDownload PDFView Record in ScopusGoogle Scholar[390]

R.C. Whitaker, W.H. Dietz

Role of the prenatal environment in the development of obesity

J. Pediat., 132 (5) (1998), pp. 768-776

ArticleDownload PDFView Record in ScopusGoogle Scholar[391]

D.A. Lawlor, G.D. Smith, M. O’Callaghan, R. Alati, A.A. Mamun, G.M. Williams, J.M. Najman

Epidemiologic evidence for the fetal overnutrition hypothesis: findings from the mater-university study of pregnancy and its outcomes

Am. J. Epidemiol., 165 (4) (2007), pp. 418-424

View Record in ScopusGoogle Scholar[392]

B.L. Silverman, L. Landsberg, B.E. Metzger

Fetal hyperinsulinism in offspring of diabetic mothers. Association with the subsequent development of childhood obesity

Ann N Y Acad Sci, 699 (1993), pp. 36-45 View PDF

CrossRefView Record in ScopusGoogle Scholar[393]

B.L. Silverman, T.A. Rizzo, N.H. Cho, B.E. Metzger

Long-term effects of the intrauterine environment

The Northwestern University Diabetes in Pregnancy Center, Diabetes Care, 21 (Suppl 2) (1998), pp. B142-B149

View Record in ScopusGoogle Scholar[394]

J.G. Kral, S. Biron, S. Simard, F.S. Hould, S. Lebel, S. Marceau, P. Marceau

Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2 to 18 years

Pediatrics, 118 (6) (2006), pp. e1644-e1649 View PDF

CrossRefView Record in ScopusGoogle Scholar[395]

S. Pinney, R. Simmons

Metabolic programming, epigenetics, and gestational diabetes mellitus

Curr. Diab.Rep., 12 (1) (2012), pp. 67-74 View PDF

CrossRefView Record in ScopusGoogle Scholar[396]

K.E. Boyle, Z.W. Patinkin, A.L.B. Shapiro, C. Bader, L. Vanderlinden, K. Kechris, R.C. Janssen, R.J. Ford, B.K. Smith, G.R. Steinberg, E.J. Davidson, I.V. Yang, D. Dabelea, J.E. Friedman

Maternal obesity alters fatty acid oxidation AMPK activity, and associated DNA methylation in mesenchymal stem cells from human infants

Mol. Metabol., 6 (11) (2017), pp. 1503-1516

ArticleDownload PDFView Record in ScopusGoogle Scholar[397]

M.J. Heerwagen, M.R. Miller, L.A. Barbour, J.E. Friedman

Maternal obesity and fetal metabolic programming: a fertile epigenetic soil

Am. J. Physiol. Regul. Integr. Comp. Physiol., 299 (3) (2010), pp. R711-R722 View PDF

CrossRefView Record in ScopusGoogle Scholar[398]

C. Allard, V. Desgagne, J. Patenaude, M. Lacroix, L. Guillemette, M.C. Battista, M. Doyon, J. Menard, J.L. Ardilouze, P. Perron, L. Bouchard, M.F. Hivert

Mendelian randomization supports causality between maternal hyperglycemia and epigenetic regulation of leptin gene in newborns

Epigenetics, 10 (4) (2015), pp. 342-351 View PDF

CrossRefGoogle Scholar[399]

J.J. Heindel, F.S. vom Saal

Role of nutrition and environmental endocrine disrupting chemicals during the perinatal period on the aetiology of obesity

Mol. Cell Endocrinol., 304 (1–2) (2009), pp. 90-96

ArticleDownload PDFView Record in ScopusGoogle Scholar[400]

R. Barouki, E. Melén, Z. Herceg, J. Beckers, J. Chen, M. Karagas, A. Puga, Y. Xia, L. Chadwick, W. Yan, K. Audouze, R. Slama, J. Heindel, P. Grandjean, T. Kawamoto, K. Nohara

Epigenetics as a mechanism linking developmental exposures to long-term toxicity

Environ. Int., 114 (2018), pp. 77-86

ArticleDownload PDFView Record in ScopusGoogle Scholar[401]

P.L. Hofman, F. Regan, W.E. Jackson, C. Jefferies, D.B. Knight, E.M. Robinson, W.S. Cutfield

Premature birth and later insulin resistance

New Engl. J. Med., 351 (21) (2004), pp. 2179-2186

View Record in ScopusGoogle Scholar[402]

N.P. French, R. Hagan, S.F. Evans, M. Godfrey, J.P. Newnham

Repeated antenatal corticosteroids: size at birth and subsequent development

Am. J. Obstet. Gynecol., 180 (1 Pt 1) (1999), pp. 114-121

ArticleDownload PDFView Record in ScopusGoogle Scholar[403]

S.L. Bloom, J.S. Sheffield, D.D. McIntire, K.J. Leveno

Antenatal dexamethasone and decreased birth weight

Obstet. Gynecol., 97 (4) (2001), pp. 485-490

ArticleDownload PDFView Record in ScopusGoogle Scholar[404]S. Entringer, S. Wüst, R. Kumsta, I.M. Layes, E.L. Nelson, D.H. Hellhammer, P.D. Wadhwa, Prenatal psychosocial stress exposure is associated with insulin resistance in young adults, Am J Obstet Gynecol 199(5) (2008) 498.e1-7.

Google Scholar[405]

K.L. Tamashiro, C.E. Terrillion, J. Hyun, J.I. Koenig, T.H. Moran

Prenatal stress or high-fat diet increases susceptibility to diet-induced obesity in rat offspring

Diabetes, 58 (5) (2009), pp. 1116-1125 View PDF

CrossRefView Record in ScopusGoogle Scholar[406]

T.F. Oberlander, J. Weinberg, M. Papsdorf, R. Grunau, S. Misri, A.M. Devlin

Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses

Epigenetics, 3 (2) (2008), pp. 97-106 View PDF

CrossRefView Record in ScopusGoogle Scholar[407]

M.F. Dallman, N.C. Pecoraro, S.E. la Fleur

Chronic stress and comfort foods: self-medication and abdominal obesity

Brain Behav. Immun., 19 (4) (2005), pp. 275-280

ArticleDownload PDFView Record in ScopusGoogle Scholar[408]

M.F. Dallman, N. Pecoraro, S.F. Akana, S.E. La Fleur, F. Gomez, H. Houshyar, M.E. Bell, S. Bhatnagar, K.D. Laugero, S. Manalo

Chronic stress and obesity: a new view of “comfort food”

PNAS, 100 (20) (2003), pp. 11696-11701

View Record in ScopusGoogle Scholar

Tradução livre, parcial, de Luiz Jacques Saldanha, maio de 2022.